83 746 ANALYTICAL INVESTIGATIONS OF BULK WAVE RESONATORS IN
THE PIEZOELECTRIC TH.. (U) RENSSELRER OLVTECHIC INST
TROY NV DEPT OF MECHANICAL ENGIME.. H F TIERSTEN
UNCLASSIFIED 28 JUL 87 AFOSR-TR-97-1233 $AFOSR-84-0351 F/G 9/S




1.6

Il

S EEE

= F)
&‘hp_..,_._.._._._t

.4

e 4
——

—
—

i

cm——
o ——
————
mm——"

1.25

fl

e
i
]

~

.
W
o
)
»

™ AW
)
o "\

Lo
>
N)

[ J
..
R

ay
N>
)

i |
0N -
G RN
PR N

» LY 'l
AN A OSAS
L) n

‘J'
"'
ot
“

.
S
N
NS
RANENE
\\P_.f "

L

9 | @
L RGO
AT AT NN

\ et S

AN LA A L%
AN NN
g » Y

>y
S
.
f



- - - - . - - - - - - - - - - - - - - - - - - W 8 * N '. 1
ML
v’.‘b‘.'-
N e
_‘1'!:'_4
nPn

BTIC EILE Copy

AD-A185 716

Final Report on Analytical Investigatioms
of Bulk Wave Resonators in the Piezoelectric Thin
Film on Gallium-Arsenide Configuration ol

Harry F. Tiersten

ELECTES

DTIC %

0CT 1 5 1987 -

N e AT T, e T e
Dudml o oy e ' !
1 v . {
Appraved for potta o : f ":: \
Lttt frel it ]
Distribn.tion Ul @&l J Wy
rewr ol
~:§$}
AL

L)
g';.‘
R
$00

July 1987 RN

87 9 24 033 iy

.' at A TATY " W”u” -« A 0 AR SRR TAS VS NI IPT N -,\r"-\-.-\1~.- WAGOES EE TN S LIRS " T AT . Y
& 0 TR A WA o o e s N P A T T g s , w0 I



el S Vol b tul Ra Sl Al Ahafhe A}

Approved for public releaso;
distributien unlimited.

'
; -
]
' . .
s U-iclassified ’
Y —— -
\ SECURITY CLASSIFICATION Of THiS PAGE ﬁ Dﬁ /‘E 57/6
Y R b ]
N
|
) REPORT DOCUMENTATION PAGE
A
1e. REPORT SECUAITY CLASSIFICATION th. AESTRICTIVE MAAKINGS

Unclassified i
~ 2. SECURITY CLASSIFICATION AUTHOAITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
)

2n. OECLASSIFICATION/OQWNGRADING SCHEDULE

4. PERFOAMING ORGANIZATION REFPORT NUMBER(S) 8. MONITORING owaglkﬂou AEPORT NUMBER(S)
- I B - 8 7 - 1 2 3 3
Sa. NAME OF PERFORMING QRGANIZATION 0. OFEICE SYMBOL |78 NAME OF MONITORING ORGANIZATION
X ensselaer Polytechnic Institute (1f epplicabie) Air Force Office of Scientific Research
u
. Sc. ACORESS (Cily. Siace and ZIP Code) ~ . 75. ADORESS (City, State end ZIP Code)
: Department of Mechanical Engineering, Bolling Air Force Base
. .. Aeronautical Engineering & Mechanics ‘Béig . 410 f}
SH Troy, NY 12180-3590 AER NC 2O33
! Sa. NAME OF SUNDING/SPONSORING 0. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
o ORGANIZATION (1 appiicabie)
", AFOSR NE Greame—No. AFOSR-84-0351
o
<. . Joc ADORESS (City, State end ZIP Code) 10. SOURCE OF FUNDING NOS.
Bolling Air Force Base PROGAAM PROJECT TASK WORAK UNIT
ELEMENT NO.. NO. i NO. NO.

11. TITLE (inciude Security Clamificetion)

(over) QI/Q@F ;2-50(’ ﬁZ.

12. PERSONAL AUTHORIS)
Harry F. Tiersten

122 TYSE CF SESOAT 136, TIME COVERED 14. OATE OF REPOAT (Yr., Mo., Dey) 8. PAGE COUNT
Final rmom 9/1/84 1o 5/31/87 1987, July, 28 71

18. SUPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necemary and (dentfy by Mock Rumder)
GROUP SUB. GR. Piezoelectricity; Elasticity; Resonators; Bulk Waves; Thin
Films; Semiconductor Wafers; Composite Resonators; Energy
Trapping; Radiation; Quality Factor; Plate Vibrations; (over)
19. ABSTRACT (Continue on reverse if necessary end identify by block aumber) - |

\’D'Trapped energy modes in the piezoelectric thin film on semiconductor composite
resonator are explained and contrasted with modes that do not trap energy. The results of
calculations of the quality factor of the fundamental essentially thickness-extensional
mode in the composite resonator due to radiation into the bulk semiconductor wafer are
discussed. The combination of materials considered was aluminum-nitride on gallium-arsenide.
The calculations show that when trapping is not present the quality factor is a very rapidly
varying function of the ratio of the composite resonator thickness to the wafer thickness
and that the range of variation is very large, i.e., between one and two orders of magnitude.
The calculations also reveal that when trapping is present the quality factor is always much
larger and its range of variation with thickness ratio much smaller than when trapping is
not present. -~

b
I#s-noceuhat the direct calculation procedure, is extremely cumbersome to use, but
1

that it?is required to check the accuracvy of a perturbation procedure,which is much easier
20. DISTRIBUTION/AVAILABILITY OF AGSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
. — I -/"‘ -
UNCLASSIFIe0/UNLIMITED (O same as aer. O oricusens O Unclassified ’ T
Tl NAME OF RESPONSISLE INDIVIOUAL 220 TELEPHONE NUMBEN 22¢. OFFICE SYMBOL
(Include Ares Code)
Kevin J. Malloy ‘ 202-767-4931 NE
R e

DD FORM 1473, 83 APR E€DITION OF 1 JAN 73 1S OBSOLETE. Unclassified

- o« o, " el g 9y W o™ o
RS RLR LTV AS o NN J-:'.-"}%I:'JC‘V}A‘.\ Jﬁ.'



Warel B R

v e w

14
4.2 a A

™ -

AR

SO

oo,

e rveerl BT

Ba5a0, ol alorat ek At ah Pall ahe oG Sabu el Aat el Mol tal Tal Yot tul =g -\"1

Unclassified o a

SECURITY CLASSIFICATION OF THIS PAGE

-

11. Analytical Investigations of Bulk Wave Resonators in the Piezoelectric Thin Film
on Gallium-Arsenide Configuration

18. Forced Vibrations; Dispersion Relations; Variational Approximation; Perturbatiom
Procedure; Strip Electrodes; Rectangular Electrodes; Strip Diaphragms; Rectangular
Diaphragms; Thickness Extensional Vibrations; Gallium-Arsenide; Aluminum-Nitride "%i'{;l

P

19. Abstract

to use. The perturbation procedure for the calculation of the quality factor of the
composite resonator due to radiation into the semiconductor wafer is discussed. and it ™~
“O~is—noted—that the perturbation procedure enables calculations for the case of rectangu-
lar electrodes and diaphragms to be performed. -§t~is_iuz;h£:—acted:bhaé“for the strip
case the calculations of the quality factor using the perturbation procedire are in good
agreement with the results obtained from the earlier more cumbersome direct procedure.

St - an -

Unclassified

QRS I M) APR -’ s T S W A -




Crovuy g4

XYY )

PPN

-

L r ]

AR

Al tal oo AR A o

1. Introduction

The composite resonator consists of a uniform thin layer etched in a small
well-defined region of a semiconducting wafer to form a diaphragm, upon which is
deposited a thin piezoelectric film along with the electrodes to form a resonant
region directly on the wafer. Under this program the case of the aluminum-
nitride film on gallium-arsenide was investigated.

Before proceeding with a discussion of the work performed under this
program, it is essential for clarity that the meaning of the words "energy
trapping"” be understood. Since the pure thickness—extensional resonant fre-
quencies are cutoff frequencies, there is usually a nearby frequency range in
which the transverse mode shape is evanescent. There is also a nearby frequency
range in which the transverse mode shape is trigonometric. Consequently, by the
selection of the appropriate thickness-extensional overtone (or fundamental)
and/or the appropriate adjustment of the geometry in the electroded and unelec-
troded regions, the transverse modal behavior can be made to decay with distance
away from the electrodes in the unelectroded region. The resulting vibration is
called a trapped energy mode, which radiates a controllably small amount of
energy into the adjacent thick portion of the semiconducting wafer and, hence,
results in the highest possible Q, albeit with many nearby spurious modes with
high Q. Alternatively, the overtone and/or geometry can be selected so that the
mode does not decay with distance away from the electrode in the unelectroded
region and the resulting vibration is not a trapped energy mode. In this case
much more energy is radiated into the adjacent thick portion of the semiconduct-
ing wafer and much lower Q's result. Although there are still many nearby
spurious modes, they are less troublesome because the Q's are lower. Most

experimental work on the composite resonator reported has been for this latter
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:E case. On the other hand, before this program was started, a detailed analytical
. treatment of the composite resonator for the case when trapping is present
'g appeared in the literature1 along with a detailed discussion of when trapping is
hé and is not present. Essentially motivated by work done under this program,
;_ experimental results obtained at Westinghouse when trapping is present have
[E recently been reported in the literaturez. However, the results are for a

2; piezoelectric thin film on silicon rather than on gallium-arsenide.

s

e 2. Discussion of Work
ig It has been found that the fundamental essentially thickness-extensional
‘oY)

o mode will not trap for an aluminum-nitride film on a gallium-arsenide diaphragm
:3 in the flat plate configuration. However, the fundamental mode will trap if the
ig gallium-arsenide diaphragm is appropriately notched a small amount in the
T: electroded region, as shown in Fig., 9 of Ref. 1. 1In addition, we have found

'E that the second essentially thickness~extensional mode will trap for the same

E film and substrate materials in the flat plate configuration for a ratio of

o film-thickness to diaphragm-thickness larger than .69.
;E An analysis of the vibrations of a composite resonator, which is driven by
e

:; the application of an a.c. voltage across strip electrodes on the major surfaces
A of the film, has been performed. The analysis includes the pertinent waves in
‘s the active region of the composite resonator, as well as all radiating waves in
 3 the thick gallium-arsenide plate. The solution is obtained by satisfying the

; differential equations for the piezoelectric film and semiconductor as well as
; all boundary conditions on the major surfaces of the film and semiconductor
'f exactly and using the appropriate variational principle to satisfy the remaining
';Z conditions along the minor interfaces approximately. The minor interfaces
'E separate the electroded from the unelectroded regions of the resonator and the
S
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3 thin region of the gallium-arsenide from the thick region. Both the configura-
r tion in which the film ends at the edges of the electrodes and in which it

} continues to the edges of the etched diaphragm have been considered when

l% trapping is not present, along with the latter configuration when trapping is

. present. In each instance the Q at the resonance condition has been calculated.
E? In performing the aforementioned calculations we have found that it is

; imperative that all radiating plate waves in the thick region of the gallium-

- arsenide be included in order to achieve accuracy. Since at a given frequency
ZE the number of radiating waves in a plate goes up significantly with thickness,
jEE we have considered gallium-~arsenide wafers no thicker than 8 mils at a frequency
. around 132 MHz, for which there are 30 radiating plate waves. Specifically,

g calculations have been performed for thicknesses ranging from 1.5 to 8 mils.

‘E The 1.5 mil case was considered at an early stage in the calculations to check
’: the program with as small a number of dispersion curves as possible. All the

'? definitive calculations were for a film thickness of 7 microns and a diaphragm
E thickness of 14 microns and the lateral dimensions were adjusted slightly to

. maintain the same resonant frequency for computational convenience. The major
'E calculations were performed for wafer thicknesses ranging from 4 mils to 8 mils
; because this is considered to be within the practical range. The calculated Q

& is a very rapidly varying function of the wafer thickness. Consequently,

‘E calculations had to be performed for very small increments in thickness in order
‘,E to get all the peaks and valleys in the interval.

2 In the absence of trapping in the case in which the film ends at the edges
?E of the diaphragm, the highest Q obtained is about 5000 and the lowest is about
; 10 and there are about 10 peaks for thicknesses between 4 mils and 8 mils. The
f highest valley has a Q of 1000. The calculations were performed using an incre-
2 ment in thickness of 1 micron. In the case in which the film ends at the edges
N
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': of the electrode, the highest Q calculated is about 15,000 and the lowest Q is
about 200. Calculations were performed when trapping was induced by notching
:é the diaphragm under the electrode. As expected, the Q due to radiation can be
) made as high as we wish simply by extending the lateral dimensions of the film
H* and diaphragm. We have calculated Q's higher than 200,000 for quite reasonable
*I dimensions. In interpreting the foregoing information it should be remembered
N, that the high Q's calculated should be higher than the actual Q's because the
! material Q and the Q due to radiation into the air are not included. The
=
’E' results discussed above mean that in order to obtain reasonably high Q when
E trapping is not present for a given wafer thickness, the thicknesses of the film
; and diaphragm must be very precisely selected. The aforementioned relative
;g stability and instability in Q when trapping is and is not present has been
ﬁ; observed at Westinghouse Defense and Electronics Center but with silicon dia-~
- phragms rather than galljum-arsenide.
A brief version of this work has been published as Ref. 3 and a more com- |
i plete version has been published as Ref. 4. Both Refs. 3 and 4 are appended to
N this report.
i The type of calculation performed in Refs. 3 and 4 is extremely cumbersome
i} to perform and was preliminary to constructing a perturbation theory to calcu-
- late the Q due to radiation into the bulk semiconductor, which is much easier to
; use. The more cumbersome direct calculation is required in order to check the
»g accuracy of the perturbation calculation.
o A perturbation analysis of the Q due to radiation into the semiconductor
s
;} wafer has been performed. This analysis is considerably less cumbersome to use
fi than the earlier direct variational treatment3’4 and is not restricted to the
:_ case of strip electrodes and diaphragms. In the treatment the resonant mode of
:f interest is determined from the equation for transversely varying essentially
)
)
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thickness~-extensional modes in composite resonators1 and simple approximate but
very accurate conditions at the edge of the diaphragm. This resonant mode is
then used to determine the radiation into the semiconductor wafer by means of a

variational approximation procedure. Then the resonant mode and the radiation

- o e el

field are employed in a perturbation integral to calculate the Q. In this work
only the configuration in which the film continues to the edges of the etched

. diaphragm is considered both when trapping is and is not present. However, in
the latter work, the cases of rectangular electrodes and diaphragms are con-

. sidered.

Of course, as in the earlier work3’4, all radiating plate waves in the
thick region of the gallium-arsenide must be included to achieve accuracy.
Calculations utilizing the perturbation procedure have been performed for the
case of strip electrodes for the same definitive geometries considered in the
earlier work3’4. These geometries consist of wafer thicknesses ranging from 4
mils to 8 mils and a film thickness of 7 microns and diaphragm thickness of 14
microns. Although different lateral dimensions were considered in this work,

. for the strip case for comparison with the earlier work a diaphragm width of 500

microns was used when trapping is not present and 600, when trapping is present.

The calculated results for the strip case are in good agreement with the earlier

more cumbersome direct calculations3’4. When trapping is not present the

¥ highest Q's calculated are very nearly the same as those obtained in the earlier

direct calculation3’4, but the lowest Q's calculated by means of the perturba-

tion procedure tend to be nearly an order of magnitude higher than those cal-

' culated by the earlier direct procedure3’4. We are not absolutely sure of the
reason for this discrepancy, but there are two possibilities. The perturbation

procedure might be tending to lose its accuracy for low Q because of the in-

! creased radiation or the resonant frequency might not have been sufficiently
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*" for the accu-

precisely determined by means of the earlier direct procedure
rate determination of the lowest Q values. However, the fact that the highest
Q's calculated by the perturbation procedure are slightly higher than those
calculated by the direct procedure seems to support the latter possibility. The
location of the peaks and valleys of Q with wafer thickness determined by means
of the perturbation procedure is in quite good agreement with those obtained

from the earlier direct calculation. For the case of square electrodes and

diaphragms, in the absence of trapping the calculated Q's are roughly between

1/2 to 2/3 of the values in the strip case. This is as expected because of the

radiation in the two orthogonal directions for square diaphragms. When trapping
is present the calculated Q's for both the strip and square cases increase very
rapidly with the distance from the edge of the electrode to the edge of the
diaphragm.

A brief version of this work has been published as Ref. 5 and a more
complete version will be published as Ref. 6. Both Ref. 5 and a preprint of

Ref. 6 are appended to this report.
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I, Introduction

The composite resonator consists of a uniform thin
layer etched in a small well-defined region of a
semiconduczing wafer to form a diapnragm, upon
which is deposited a thin piezoelectric film along
with the electrodes to form a resonant region
directly on the wafer. In this work calculations
are performed for the particular case of the
aluminum-nitride £ilm on gallium-arsenide.

Before proceeding with a discussion of this work,
it is essential for clarity that we briefly explain
the meaning of the words "energy trapping.” Since
the pure thickness-extensional resonant frequencies
are cutoff frequencies, there is usually a nearby
Tequency range in which the transverse mode shape
is evanescent. There is also a nearby frequency
range in which the transverse mode shape is trig-
onometric. Consequently, by the selection of the
appropriate thickness-extensional overtone (or
fundamental) and/or the appropriate adjustment of
the geometry in the electroded and unelectroded
regions, the transverse modal behavior can be made
to decay with distance away from the electrodes in
the unelectroded region. The resulting vibration
is called a trapped energy mode, which radiates a
conctrollably small amount of energy into the adja-
cent thick portion of the semiconducting wafer and,
hence, results in the highest possible Q, albeic
wich many nearby spurious modes with high Q.
Alternatively, the overtone and/or geometry can be
selected so that the mode does not decay with
distance away from the electrode in the unelec-
troded region and the resulting vibration is not a
trapped energy mode, In this case much more
energy is radiated into the adjacent thick portion
of the semiconducting wafer and much lower Q's
result, Although there are still many nearby
spurious modes, they are less troublesome because
the Q's are lower. All experimental work on the
composite resonator reported to date has been for
this latter case’™ ., On the other hand a detailed
analytical treatment of the composite resonator
for the case when trapping is present appears in
the literature’ along with a detailed discussion
of when trapping {s and is noC present,

* Present address: AT&T Bell Laboratories,
1600 Osgood St., North Andover, MA 01845,

0090-5607/85/0000-0311 $1.00 © 1985 IEEE

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

ON THE REDUCTION IN QUALITY FACTOR OF THE PIEZCELECTRIC THIN FILM ON SEMICONDUCTOR
COMPOSITE RESONATOR DUE TO RADIATION INTO THE BULK SEMICONDUCTOR

D.S. Stevens™, H.F, Tiersten and D.V. Shick

Using the existing® constancs of aluminum-nitride,
we have found that the fundamental essentially
thickness-extensional mode will not trap for an
aluminum-nitride film on a gallium-arsenide
diaphragm in the flat plate configuracione. How-
ever, the fundamental mode will trap if the
gallium-arsenide diaphragm is appropriately noctched
a small amount in the electroded region, as shown
in Fig.9 of Ref.7. In addition, we have found that
the second essentially thickness-extensional mode
will trap in the flac plate configuracion for the
same film and substrate materials for any ratio of
film-thickness to diaphragm-thickness,

In this work an analysis of the vibrations of a
composite resonator, which is driven by the appli-
cacion of an a.c., voltage across strip electrodes
on the major surfaces of the film, is performed.
The analysis includes the pertinent waves in the
active region of the composite resonator, as well
as all radiating waves in the thick gallium-
arsenide place. All previous analytical work
expressly ignores radiation into the bulk semi-
conductor except one cteatmenc1°, which unrealis-
tically ignores the junction between the etched
diapnragm and the bulk semiconductor, The solution
is obtained by satisfying the differential equa-
tions for the piezoelectric film and semiconduccor
as well as all boundary conditions on the major
surfaces of che film and semiconductor exactly and
using the appropriate variational principle’® to
satisfy the remaining conditions along the minor
incerfaces approximately. The minor interfaces
separate the electroded from the unelectroded
regions of the resonator and the thin region of the
gallium-arsenide from the thick region. Past
experience shows that this type of approximation
yields extremely accurate results if all the proper
waves are included*®'*?, Boch the configuration in
which the film ends at the edges of the electrodes
and in which it continues to the edges of the
etched diaphragm have been considered when trapping
is not present, along with the latter configuracion
when trapping is present. In each instance the Q
at the resonance condition is calculated,

II. Basic Equactions
The differential equations of motion and electro-
statics and linear piezoelectric constitutive equa-

tions for the piezoelectric film may be written in
the tensor form'®'}S

1985 ULTRASONICS SYMPOSIUM — 311
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where the notation is conventional, The equations
of motion and the linear elastic comstitutive
equatioans for the gallium-arsenide may be written
in the tensor form 5¢!€
s 5.8 S s s

(3)

=2y T T e, 2

ij,i 3
and we note that the equations are too cumbersome
to write out in detail. At this point we intro-
duce a Cartesian coordinate system X1s Xy Xg with
che x3~axis normal to the major surfaces of the
aluminum nitride film and along a cube axis of the
gallium-arsenide, Since aluminum-nitride has small
piezoelectric coupling, for small wave and decay
numbers along the plate, which are the only ones of
interest in the active region, we need retain only
x.-dependence of all electrical variables and we

hive .
D: f £ £ £

377 P37 ka2 %337 3 @
Figure 1 shows a schemacic diagram of a cross sec-
tion of a thin aluminum-nitride film on a chin
jallium-arsenide layer composite trapved enerzy
resonator for the configuracion in which the film
ends at the edge of the diaphragm. [n the unelec-
troded regions the boundary conditions on the
major suriaces are

£ N
T3j-—0, D3 0 atc x3-h , (3)
: ; . £
oS enw, wfed®) Sfinac k=0, (9
3 U3 i i 3
r§j=o at x3=-hs, (N

where the superscripts f and s stand for the thin
film and semiconductor layer, respectively, and =’
is rhe mass density of the ground electrode, The
electrical condition in (5)2 is a consequence ot

the fact that the xl- and xz-dependence of all

electrical variables has been left out of account
and the electrical potential in space is bounded act

x, = », Since the electrodes are much thinner

3

than either the thin film or the layer, we have
employed approximate thin plate equations 7 for

the electrode plating in (6)1, and we have made use

of the fact that the mechanical stiffness of the
very thin electrode plating is negligible for small
wyvenumbers along the plate. Similarly, on the
major surtaces of the composite plate in the elec-
troded rayion the boundary conditions are

=~ :2'h'u;, ';;rs\/chc ac x =ht (3)

re ‘ ,
j j 3

e

g =80 ac x, =0 )
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along with (6) and (7), which remain unchanged.
The quantity p’ is the mass density of the upper
electrode,

Figure 2 shows a schematic diagram of a cross-
section for the configuration in which the film

ends at the edges of the electrodes. The boundary
conditions on the major surfaces of the composite
plate in the electroded region, which still contains
the film, are exactly the same as in the previous
case. However, the boundary conditions on the
major surfaces of the unelectroded plate, which no
longer contains the film, are much simpler than in
the previous case and in place of (5) - (7) we have

s s
T2 = %x. =0 -
3j Q0 at 3 and xy=-h” (10)
For either configuration the correspoading
boundary conditions on the major suriaces in the
region of the bulk semiconductor are

=0 and x, =-h°, (1)

3 3

s
T,.=0 atr x
3j
Since the piezoelectric coupling is small in
aluminum-nitride, we may transform the inhomo-
geneity from the boundary conditionms in (8), iato

the differenrial equations by means of the trans-
formation shown in Eqs.(3.26) of Ref.7, which is
considered to be part of this work®®. Furthermmore,
since we have replaced (1)2 and (2), by (4),

electrical conditions need be sarisfied at a minor
interface. Then the conditions that should be
satisfied at each minor interface are the conti-

ity of T d T, .. . si ir
nuicy ot u,, up Iy4 am 11 However, since in

the approximation technique we employ the solution
is written as a sum of eigensolutions, each of
which satisfies the homogeneous diff erencxal equa-
tions and boundary conditions on the major surfaces
for one of the three regions, i.e., the electroded
composite, the unelectroded composite and the Sulk
semiconductor, exactly, we cannot satisfy the
continuity conditions across the interfaces between
the regions exactly. Nevertheless, the remaining
continuity conditions across the incerfaces may be
satisfied approximately along with the inhomogen-
eous driving term resulting from the aforementioned
transformation by satisfying the proper form of the
appropriate variational principle ® of linear
piezoelectricity, in which all that remains is an
integral over the inhomogeneous forcing cerm plus
integrals over the interfaces because all other
terms in that form of the variational principle
vanish on account of the equations and condicions
satisfied by the solution functions emploved *

The form of the variational principle of Lnteresc
here is given in Eq.(6.44) of Ref.ll. S$ince the
solution functions satisfy the arorementioned
equations and conditions, all that remains or

Eq. (6. »A) of Ref.ll is

: ht £ .
[T, 03 " ey
K'J » T a., dx.dx

v v CL h[ . 3 1
o o . 33

IR LT LY dx

M 13773 1171 3
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+ J (1], 885 + 73,88 dxy *+3 fs (13,
s xl-d -h

s -5 s
)(6u +6u’ )'4-('1']_3 13)(6u3'+-51.13) +

‘S
(u -u )(5T11+5T11)+§ -u )(6'1‘
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5113)] PN [(T11 T, ) (58 +8u))
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£ =f _f £ _£ £, =f
- - 5
* (T13 Ty3) (B3 +8u) + () -u (5T +
- E 5
)+(u u )(5T13+ T )Jx1=i clx3 +
[o]
1 e S ;a8 as
5 f [(r11 T ) (Bu +500) + (T],
&8
-h
Ti3)(5u§+65§)*(ui-ﬁi)(é‘ril-bf’};l)

+ (u -u $y(sTd )] dx,=0, (12)

3 13 xl-d 3

for the case when trapping is not present and the
film extends over the entire diaphragm. When the
film ends at the edges of the electrodes the fifth
integral in (12) is not present and the second
integral is replaced by

nt ,

. (? af+ ?_ £y dx (13)
. 3 1 R
fe] l'l.

When trapping is present with a notch under the
electroded region, as shown in Fig.3, the fourth

integral is taken from 4% to 0 (instead of -u8
to 0) and there is an additional term

s
r S ;.S S . S
DTty T13'u3) . de , (1l4)
-hS 1
in Eq.(12).

I1I. Pure Thickness-Extensional Vibrations

Since in all cases the composite resonator will be
operated at a frequency in the vicinity of one of
the pure thickness-extensional resonances of the
composite plate, the pure thickness-extensional
resonant frequencies of the composite are of
particular importance in this work, It is shown
in Sec.III of Ref.7 that for the composite plate
without a driving electrode but with a ground
electrode, the pure thickness-extensional resonant
frequencies are given by

v, = (E§3/of)l/2'\° -R7/G%), 1s)

where T]cf, is the appropriate root of

tan T];hf+cru tan ucﬂ?\f=0 , (16)
and
“h 1 r 2
” o] o - C u el
BrEE S 2o f T
p cos nfh cos bcﬂ‘
£ .2 H
(e ) c
Ef -cf R & 2 P 23
33 33 £ ! Ef !
e33 33
_f
339 1/2 S
" —~f y o= TF - 17y
€337 h

Similarly, for the completely electroded composite
plate driven by a voltage it has been shown that
the pure thickness-extensional resonant frequencies
are given by

- _ W

w, = )1/"' (1+2%¢c° ), (18)

where

o

5
k= )

= f 3 -2 +cru tan ..:T‘:hf tan T,fn

(.fh 'fh - ‘

- R"-R'(1-c .tan n‘f’hf tan ucn‘;hf) s

P

2 £ .2, f ¢ . oo, £ £
= - = - - QY
k (e33) /c33=33, R'=z"h'/zh . (19

The difference between the resonant frequencies of
pure thickness-extensional vibrations of the
composite plate with and without a driving elec-
trode, i.e., we-ze for the same 'J"‘, is very

&
important when trapping is present.

T

iV, Straight-Crested Dispersion Relations

In this section we obtain the straight-crested
dispersion relations for the composite plate, the
thin diaphragm without the film and the bulk semi-
conductor because these determine the solution
functions that are used in the variational condi-
tion (12), Since these eigensolutions in each
region satisfy the homogeneous differential equa-
tions and boundary conditions on the maJor surfaces,
they are too cumbersome to present here-°.

The solution for decaying waves in the unelectroded
composite plate is presented in Eqs. (4.14) - (4.24)
of Ref,7, which is considered to be part of this
work. As noted in Ref.7, the solutions for travel-
ing waves in the unelectroded and electroded
composite plate can readily be obtained from the
solution presented. The solutions for the simpler
cases of the diaphragm without the film and the
bulk semiconductor are not as cumbersome, but are
also too lengthy to present here' S These types
of solutions are presented in a number of

places1 8.19

The pertinent dispersion curves for the aluminum-
nitride film on the gallium-arsenide layer compo-
site plate are shown in Fig.4, We do not distin-
guish between the electroded film with shorted
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electrodes and the unelectroded film in the figure.

This is done in great decail in Ref.7. Further-
more, when required, the difference between the two

can be calculated from (uf -Ef) given in the last
section, The dispersion curves are for a film
thickness of 7 microns and a diaphragm thickness
of 14 microns, The pertinent dispersion curves
for a 14 micron thick gallium-arsenide diaphragm
are shown in Fig.5. The lowest 17 real dispersion
curves for the bulk gallium-arsenide plate are
shown in dimensionless form in Fig,6. For the
fundamental essentially thickness-extensional
resonance for the composite dimensions mentioned
(around 132 MHz), this number of dispersion curves
is for a gallium-arsenide wafer thickness of about
5 mils. In this work we perform calculations for
wafer thicknesses up to 8 mils for which there are
30 real dispersion curves for a frequency of

132 MHz. However, we do not bother to show the
figure for more than 17 in this work.

V. Forced Vibrations of Composite Resonator

In this section we determine the essentially
thickness-extensional vibrations driven by the
application of a steady-state driving voltage to
the strip eleccrodes on the surfaces of the piezo-
electric film of the composite resonator shown in
anv of Figs.l -3, Since we include radiation into
the bSulk semiconductor, we can use the solution to
calculate the @ at resonance of the mode resulting
from radiation into the bulk semiconductor.

In accordance with the earlier discussion we take
tne approximace solution in the fomm

a £ iut
a 3 Vs
I T DU NS & Mt
1= K d . ————
a a ) h:
2=l _ C33
o
i = R'PEE L,
a - 1
3=1
n n
£ ) (%) £(2) s o oL(@) s ()
u_ = K" , u = K7 u ,
a - a 3 - 1
a=l . x=1
TS ()as ()
aS \ Ylas (v N
& o K ul . (20)
v=al

whera f, n and n are the number of branches of che
dispersion curves included in the electroded
composite, unelectroded composite or diaphragm and
bulk semiconductor, respectively, which are given
ta Figs 4 - 6. The eigensolution functions G:(:)
G°(i), ut(l), uS(J), @° denota the solution func-
a a a a
tions that sacisfy the differential equacions and
the boundary conditions on the major surfaces for
each of the respective regions and yield che dis-
persion curves shown in Figs.4 -« 6 and which are
£do cumbersome to present here'®, Since the solu-

PLEL
K »

’

tion funccions in (20) are fixed, only the

K(z) and \(() are varied when (20) ts substituted

tnto (12). Accordingly, substituting from (20)
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into (12), employing (2)1 and (3)2 and performing

the integrations, we obtain'® an equation of the
form

a a i
T (8),=(8) C g (3)z(5) .
25& v 1.2251( K, +
g=1 2=] §=1
i i s @ (),
e
a=l e=1
A 0 i n
AT (D LY (4 LAY g (8 ()5
L R
v=1 ¢=1 2=] =1
+ (Mg Crp
2
N i
(x)2(v)g =G z -
w000 (RN ek@e@s Va0, o
a=1l y=1
. =(3) -~ - T
uherf the expressions for 7/, 3350 2,00 avg, bE:

and bﬂV are too lengthy to present here. Since

the variations in (21) are arbitrary, we obtain*®

=(8 )

the inhomogeneous linear equations for the K'~
K@ 204 8 in the form

a a
U x@; 4 ) K(a)g: a.ye(®) 2=1, &

an 5 3 1 ?
7=l ¢ :=l
a a
\ "(e)a- - Y E(:)g~ "
-~ ] — iz
==l 3=1
N .(,/).
L\_ bw’o, x=1,n,
y=l1
i [
Vo)A oL (2) - - .
o 3 o K o J, v=1l,a. 22
Z=1 =1

VI. Quality Factor Resulting from Radiation

In chis section we calculate the quality factor due
to radiation into the bulk semiconductor for each
of the three cases from the analysis prescnted in
the previous section. Although the solution may

be obtained from the analysis in the previous sec-
tion at any driving frequency for which all the
pertinent dispersion curves are available, in this
work we are interested in the solution only at the
fundamental essentially thickness-extensional
resonance for each of the three configurations.

It is clear from past experience ~'*3 that under
these circumstances we need consider only the
essentially thickness-extensional branch in the
composite region (either electroded or not) of the
resonator, which is the curve labeled 1 in Fiyg,
However, in the thin region of the semiconductor
without the tilm and the bulk semiconductor ail
pertinent dispersion curves shown in the respect:ve
Figs.> and b must be included to obtain accurace

The use of only one branch for the composite rogion
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means that we always have fi=1 and n=1 for the
configuracion shown in Figs.l and 3 but not for the
configuration shown in Fig.2, for which all curves
shown in Fig.5 must be included.

As usual, the quality factor Q is defined by

Q= (K+U)/E™ (23)
where ¢
T d ri_ .
1 1.
K=z I dt 2 Re J dx, Jg 2 ouauadx3,
o d -
1 1|: 1 ¢ Rl
veglached Jar, [ 3 e1¥1,1%,1
o -d -n°
- L) - +
* °33“3,3“3,3+“°13“1,1"3,3 )3
3 l)( 1, 3-l-u ) )d\ _] ,
T o
tw 1 o
3 =-2vrdt2Re f T Lgdxy, (24)
° s 1
“h

in which T is the period of the vibration and we
have taken the liberty of writing :he integrals in
( A) 3 over discontinuous functions ® to achieve

brcvity. For a given geometry and mode, resonance
is determined by obtaining Q over a (narrow) range
of frequencies and finding the frequency for which
Q is a maximum.

In performing the calcularions we have found that
it is imperative that all radiating plate waves in
the thick region of the gallium-arsenide be
included in order to achieve accuracy. Since at a
civen frequency the number of radiating waves in a
plate goes up significantly with thickness, we have
considered gallium-arsenide wafers no thicker than
8 mils at a frequency around 132 MHZ, for which
there are 30 radiating plate waves., Results are
presented for wafer thicknesses ranging from 4 mils
to 8 mils because this is considered to be within
the practical range. All the results presented are
for a film thickness of 7 microns and a diaphragnm
thickness of 14 microns and the lateral dimensions
of each configuration were adjusted slightly to
maintain the same resonant frequency for computa-
tional convenience. Since the calculated Q is a
very rapidly varying function of the wafer
thickness,calculations had to be performed for
very small increments in thickness,6 i.e., 1 micronm,
in order to get all the peaks and valleys in the
interval.

In the absence of trapping, for the case shown in
Fig.l the results are plotted in Fig.7, which shows
the aforementioned sharp variation in Q with wafer
thickness., It can be seen from the figure that the
highest Q obtained is about 4750 and the lowest is
about 10 and there are about 10 peaks for thick-
nesses between 4 mils and 8 mils, The highest
valleys have Q's of about 700 and 2000, respect-
ively. For the case shown in Fig.2 the results

are plotted in Fig.8, which shows variations

in Q with wafer thickness similar to Fig.7, but

in this case the Q's are considerably higher. It
can be seen from the figure that the highest Q
obtained is about 15,000 and the lowest Q is about
200, Calculations were performed when trapping was
induced in the fundamental mode by notching the
diaphragm under the electrode as shown in Fig.3.

As expected, the Q due to radiation can be made as
high as we wish simply by extending the lateral
dimensions of the film and diaphragm. Figure 9
gives Q as a function of (d-{), i.e., the distance
from the edge of the electrode to the edge of the
diaphragm. It can be seen from the figure that Q
increases very rapidly with (d - L) and at d =22,

Q = 70,000 for this geometry. For these calcula-
tions the wafer thickness was 6 mils, Even when
trapping is present the Q is a varving function of
wafer thickness, but the range of the variation is
less than 1/10 of that when trapping is not present
which is not of interest since the Q with trapping
is so much higher than the Q without trapping. In
interpreting the foregoing information it should be
remembered that the high Q's calculated should be
higher than the actual Q's because the material Q
and the Q due to radiation into the air are not
included. The results discussed above mean that in
order to obtain reasonably high Q when trapping is
not present,for a given wafer thickness the thick-
nesses of the film and diaphragm must be very
precisely selected.

’

Since the variational condition in (12) does not
expressly match the mode shape at the interfaces
unless the solution is exact 5, the extent to which
the calculated mode shape matches at the inter~
faces gives an indication of the accuracy of the
approximate solution obtained. Typical plots of

the uz-displaccment {ield, which is the large one

Zfor the essentially thickness-extensional modes
considered here, for the configurations shown in
Figs.l and 2 are shown in Figs.l0 and 11, respect-
ively. It can be seen from the figures that the
u.-displacement field matches quite well at the
interfaces., Consequently, we can conclude that the
approximate solution obtained is quite accurate.
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Figure 3 Cross-Section of a Composite Resonator
with the Layer Notched under the Elec-
trodes to Cause Trapping in the Funda-
mental Mode when it does not Trap in the
Flat Plate Configuration
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Figure 6 Dispersion Curves for the Gallium-
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» LY . . . . . . . !
O The composite resonator consists of a uniform thin layer ciched in a small well-defined region .
v of w semiconducter wafer to torm a diaphragm. upon which is deposited a thin piczoclectric -
. 5 . . \ ~
. i along with the clectrodes to form a resonant region direetly on the wafer. Although the X
. campesite resenator, which operates moan essentiadly thickness-extensional mode. can be o
constrictea to employ energy trapping. almost all existing experimental work i the iterature -
24 (s For the case when trapping s not present. All previous analvucal work expressly ignores :J.
o radation e the hulk semiconductor except one treatment. which unrealistically rgnores the 7
A 3 “ o
:: priction hetween the etched diaphragm and the bulk semiconductor. In this work an analyvss :.-
. . ‘ . , : .
. of the compe ite resonator driven into essentially thickness-extensional vibrations by the R
: apphaation of avoltage to strip electrodes is performed. The analvsis includes all radiating o
plate wavesn the thick portion of the semiconductor. The solution consists of i sum of terms
. satistying all ditferential equations and boundary conditions on major surfaces exactly and uses .
., L. . . . A . . Lo -’
the appropriate variational principle of lincar piezoelectrieity to satisfy the remaining Ry
L. conditions approamately. For the case of the aluminum-nitride film on gallium arsenide the Q A
" 4 ~ . . - . ‘.-
. 15 caleudated for both the configuration in which the film ends at the edges of the clectrodes T
: . and i which 1t continues to the edges ot the etched diaphragm when trapping is not present &
p* and for the latter configuration when trapping is present. The calculations show that when
. . . . . . ~ . . -«
- trapping is not present the Qs a very rapidly varying function of the ratio of the compaosite :-'
- resonator thickness to the wafer thickness and that the range of variation is very large. i.e., \:.
- . . . . o)
XS between one and two orders of magnitude. The calculations also reveal that when trapping is Ly
. . . -
-2 present the @ is always much larger and its range of variation much smaller than when S
- . . I-
S trapping 1s not present. s
. . ®
1. INTRODUCTION trapped energy mode. which radiates a controtlably small -,
- . : S amount of energy into the adjacent thick portion of the semi-
. I'he composite resonator consists ofa uniform thin layer . . . .
v . . : conducting wafer and. hence. results in the highest possible =
g’ ctehed in g small well-defined reglon of a semiconducting e ) = . o
.. . . ; . . . Q. albeit with many nearby spurious modes with high Q. Iy
wafer to form a diaphragm. upon which 1s deposited a thin . . .
. : o . . Aiternatively. the overtone and/or geometry can be selected ..
i piczoelectric film along with the electrodes to form a reso- e . N,
s ) R . B so that the mode does not decay with distance away from the *" =8
nant region directly on the waler. In this work an analysis of A ) - )
: L . . . electrode in the unelectroded region and the resulting vibra- g,
. the vibrations of a composite resonator is presented includ- L . -,
- , . . tion is not a trapped energy mode. In this case much more e
. ing the very important transverse behavior of the essentially . . . . . . R e
. - . energy is radiated mto the adjacent thick portion of the semi- RS,
N thickness-extensional modes and the attendant radiation . : . .
. ) . . conducting wafer and much lower Qs result. Although -
. into the bulk semiconductor hoth for cases in which energy . . “
- . X there are stll many nearby spurious modes. they are less o
. trapping 1s and is not present. The calculations are per- . Jd
» . . . : . troublesome because the Qs are lower. Almost all experi-
tormed for the particular case of an aluminum-nitride film .
i reenid mental work on the composite resonantor reported to date
on gallium arsenide. . ) v
. s ¢ . ) . . has been for this latter case.' “On the other hand, a detailed
- Betore proceeding with a discussion of this work, it is . A
. . ‘ N . v analytical treatment of the composite resonator for the case
- essential for clarity that we briefly explain the meaning of the L _ .
- . : e . when trapping is present appearsin the iterature along with
- words “energy trapping.”” Since the pure thickness-exten- . , . N
- . . . . . a detailed discussion of when trapping s and 1s not present
sional resonant frequencies are cutofl frequencies, there is 1 S . .
o . . Using the existing™ constants of aluminum nitnde. we
- usually a nearby trequency range in which the transverse -
: : - . . have found that the fundamental essentially thickness-ex- o
mode shape is evanescent. There s also a nearby frequency i ‘ . : AR
. ) tensional mode will not trap for an alunmam-mitnde tilm on -
range i which the rransverse mode shape is trigonometric. . ) e
LS . . . a galhum-arsenide diaphragm m the flat-plate contigura- e
Conseguently, by the selection ol the appropriate thickness- LS, . . K
: o . . tion.” However. the tundamental mode wall trap ot the gal- el
! extenstonal overtone tor fundamental) and/or the appro- v N -
0 o lium-arsemde diaphragm s appropriately notchod ooamat! e
priote adpustment of the peometrs i the electroded and une- N ' : - S
) amountin the electroded rason asshownm b v orRet -
lectraded rewons, the transverse modal behavior can be . : @
‘ : . In addinon, we have found that the second essentisg g
. tads todecay wath distance away from the electrodes i the )
. . ' ness-extensional mode wall trap i the Nar-plate « .
. unele treded regwen The resaltme vibranon s called o . : . N
‘ ton for the same fillmand sabsoate materi ds for e e ! LS
- . -®
- Pooor it NI B T e s TG Dy Stroel St h]'”””"I‘”"“l“‘h'”"”'lf‘m”_‘“MW“ ‘I..
N Mt g Inthiswork ananals s e vhrations o o0 i st S
Q23R A Ttn B0t et GH At BASG BG 192238 80 dn B O A NN '.".
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resonator, which is driven by the application of an ac voltage
across strip electrodes on the major surfaces of the film, is
performed. The analysis includes the pertinent waves in the
active region of the composite resonator. as well as all radiat-
ing waves in the thick gallium-arsenide plate. All previous
analytical work expressly ignores radiation into the bulk se-
miconductor excep: one treatment,"’ which unrealistically
ignores the junction between the etched diaphragm and the
bulk semiconductor. The solution is obtained by satisfying
the differential equations for the piczoelectric film and semi-
conductor as well as all boundary condttions on the major
surtaces of the film and semiconductor exactly and using the
appropriate variational principle,' in which all conditions
are natural conditions, to satisfy the remaining conditions
atong the minor interfaces and the inhomogencous driving
term that appears in a differential cquation for the ilmin the
clectroded region approximately. The minor interfaces sepa-
rate the electroded from the unclectroded regions of the res-
|

Il. BASIC EQUATIONS

onator and the thin region of the gallium-arsemde from the
thick region. Past experience shows that this ty pe of approas-
mation yields extremely accurate resufts if all the proper
waves are included.' " Both the configuration i which the
film ends at the edges of the electrodes and m which i con-
tinues to the edges of the etched diaphragm hav e been con-
sidered when trapping is not present, along with the Tatter
configuration when trapping is present. Incach imstance the
quality factor (@) at the resonance condition s calculated.
The calculations show that when trapping s nor present the
Qs a very rapidly varving funcuon of the tano of the coms-
posite resonator thickness, e < the presockectric tilm plus the
semiconductor layer, to the water thichness and thar the
range of variation of Qis very large, te between oneand tao
orders of magnitude. The caleulations alse reves) that when
trapping is present the Qs always muoch Birper and s sange
of variation with the thickness o muach sonadicr than when
Lrapping is not present

The differential equations of motion and clectrostaties and linear piczoclectric constitutive equations for aluminnm,
nitride with x| the bexagonal axis may be written in the form'

Cple o (s v U e SO O s O e s )y il

Co e+ e Uy e Co sy POl - ey ey o e,

Coltoyy ey e, et L S 7 Y 7N LY R Y N R Y e
ol ey Coaly el - (e ColuL e e (ST €y .- (3 (D!
7 . . N .

T S T A I Coy I Coly G o - oy

I Coly L s Ol Oy / Coll . Oy

A R T B AN, I Cotle ) (%)
Do e €. L N N Y S L R S £y 4

where

I aed DD denote the components of the mechanical displacement. the stross tensor. and the dectrie displacement.
. | i

respectnelyand o e cand e denote the clastie, prezoclectne, and diclectnie constants, respectinely g and o denote the

clectre potcanal and mass density s respectin ey sand we have emploved the usaal compressed matny notation - Wecmpla,
Coaesri fensor aotabion, the summanion cotventton for tepeated tensor imdices, the dot notation tor partial differannation
with respect to time, and the convention that a comma fotlowed by anmdex denotes partad differentiation with rospect 1o g
pac o ndiete At thos point e note that we has e mtroduced o Cutesian coordimate ssstem v with the v oasas nornal
tothe magor surfuces of the aluminum mitnde tilme Sinlarhy . the displacement equations of moton and hnear clastic

consimiiee equadions for the aoapiezoclectric galhum arsemide semiconductar with voalong a cube aas tike the form ™

Vol e O Y s e )l e Ol Jre

S L N S T T A I / SO AT L B € Sr I SR F T S S P11
L U SR R G F S N1 (Cyy v Gy W0 o il c8)

! T PN 7 AT 7 SUUUUY AN SN /I S 7] L S 7 B A SR VSRR S ¥ DN

/. SVLE 7R TR N o el v o b eyt ) 16
r -
W mose that i the essennally thickness-extension- R « 0 T
Jdoed s the regton contaimng the film, which are the ,
' e ¢ - D €y (8

cvle Datorest m this worn, the wave, o0 decay numbers

aiws g ke are muach smadler than the thickness wanes Figure P showsaschematio diagian of woross section of

Ay consenence of these small wave and decae

arthinadumanaes mtnde ilmooncsshie palhieon arsemde b
b atone the phae and the sl prcs celectric coupling ercompostte trpped-cnerey sesonator tot the contiparatic n

Varnume tnde, we congnore the voand v depen- iwinch the i ends at the cage of the dagphragme In the

e ot al deeraeal vanablos as e Ret Toand i place of

Fgs 2vand 13y, we have

PEAE] SoAppl Phys o 60 NG Qictoher 14fie,

unclectroded raions the houndany conditons en the magor
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FIG. 1. Cross section of a composite resonator consisting of a thin prezoe-
lectrie film on a galhium arsemde fayer with the film covering the enure
layer

S

FIG. 2. Cross secuon of a compasite resonator with the piezoelectric ilm
ending at the edge of the clectrodes.

70 =0, D! - 0wmx, h' (9 ", =0atx,=0andx,= — A" (14)
', -r. - h'p"uw. w - u. D{=0atx, =0, (10) For cither configuration the corresponding boundary condi-
7" =0uatx, W (11) tions on the major surfaces in the region of the bulk semicon-

where the superseripts fand s stand for the thin-film and
semiconductor layer, respectively. and p” 1s the mass density
of the ground clectrode. The electrical condition in (9) . is a
consequence of the fact that the x, and x. dependence of all
clectrical variables has been left out of account and the elec-
tric field in space vanishes at x, = . Since the electrodes
are much thinner than cither the thin film or the layer. we
have employed approximate thin-plate equations'” for the
clectrode plating in (10),. and we have made use of the fact
that the mechanical stiffness of the very thin clectrode plat-
g is neghgible for small wavenumbers along the plate. Sim-
tharly. on the major surfaces of the composite plate in the
clectroded regron the Foundary conditions are

. phe oy e at A (12
¢ ODatx 0, (13)

alongwith ¢ 100 and ¢ 11) . which remaim unchanged. The
quantity o s the mass density of the apper electrode.

Frgure 2 <hows a schematie diagram of a cross section
for the contizaration m which the film ends at the edges of
the clectrodes The boundary conditions on the major sur-
faces of the composite plate in the electroded region, which
stll contams the e are exactly the same as in the previous
case. However, the boundary conditions on the major sur-
taces of the unelectroded plate, which no longer contains the
filmn, are much simpler than in the previous case and in place
of (9)-(11) we have

I}rm‘“-“rm»)(s“}m: n D;\",:'()q |IY|\]({,V

. J [(;jm "Lu‘rkrlnv)hu;mv ((-)“"” 4 ";'n»Dlnw
N

\

- \'m

N J mt O duT) b
-
v (D
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ductor are

I'',=0atx, =0andx.= —h" (15)

Since we have replaced (2) and (4) by (7) and (8). respec-
tively, no electrical conditions need be satisfied at a minor
interface. Then the conditions that should be satisfied at
cach minor interface are the continuity of w0, T, cand Ty
and at cach free edge are 7,, = T,, = 0. However, since n
the approximation technique we employ the solution is writ-
ten as a sum of eigensolutions, each of which satisfies the
homogencous differential equations and boundary condi-
tions on the major surfaces for one of the three regions, 1.c.,
the electroded composite, the unelectroded composite, and
the bulk semiconductor, exactly. we cannot satisfy the con-
tinuity conditions across the interfaces between the regions
exactly. Nevertheless, the remaining continuity conditions
across the interfaces may be satisfied approximately by satis-
fying the proper form of the appropriate varational princi-
ple'" of linear prezoeleetricity, in which all condinons are
natural conditions and all that remains is an integral overan
imhomogencous forcing term that arises in the solution plus
integrals over the interfaces, because all other terms in that
form of the variational principle vanish on account of the
equations and conditions satisfied by the solution functions
employved. The form of the variational principle of interest
here is given in Eq. (6.44) of Ref. 11, which we reproduce
here for the configuration shown in Fig. 3 in the form'”

)og ] dS

[ Rl KT TR T VN P J""‘)("D;""](IS)

TR C LA Fore

Dobg s dey (@' @ TNSD " 4 8D ]S - O, (16)
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FIG. 3. Diagram of a bounded region containing an internal surface of dis-
continuity.

where S ‘¥’ denotes the surface of discontinuity separating
region 1 from region 2, and S ™ and § "’ denote the por-
ttons of the mth surface on which natural- and constraint-
type conditions,'” respectively, are prescribed. We note that
SV and S refer to different portions of the surface for
different terms in the boundary sums depending on each ac-
tual condition at a point. In (16) 1, denotes the outwardly
directed unit normal to the mth surface, n;?’ denotes the unit
normal to the surface of discontinuity directed from region 1
toregion2,7;",& ‘", ™", and @ ' denote the prescribed
tractions, charge, mechamcdl displacement, and electric po-
tential, respectively, for the mth surface, and the meaning of
the remaining quantities in (16) is obvious from earlier dis-
cussion. The variational condition in (16) for the simplest
configuration, which is shown in Fig. 3, makes clear how to
apply the variational condition to more complicated config-
urations such as shown in Figs. 1 and 2. Consequently, it is
not worthwhile writing the general variational equivalent of
(16) for each configuration because it becomes too cumber-
some and the actual useful condition can be obtained from
(16) for any configuration. Furthermore, in any given appli-
cation what is taken as a surface of discontinuity for applica-
tion of the variational principle (16) is not clear from the
figure itself. but depends on what conditions the approxi-
mating functions satisfy.

Ill. PURE THICKNESS-EXTENSIONAL VIBRATIONS

Since in all the cases the composite resonator will be
operated at a frequency in the vicinity of one of the pure
thickness-extensional resonances of the composite plate, the
pure thickness-extensional resonant frequencies of the com-
posite are of particular importance in this work. It is shown
in See. HH of Ref. 7 that for the composite plate without a
dnving clectrode but with a ground electrode, the pure
thickness-exiensional resonant frequencies are given by

R"/G"y, (1

where 377 is the appropriate roat of

o, L phy Tyl

tan y'h ' Cutan okt -0, (18)
and
. “h o e
T L L S AT
ok cos k! cos” oyth !
with
coocle el el ) o el
7] ! e ;)')I oo hi/h (20)
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Similarly, for the completely electroded composite ' plate
driven by a voltage it has also been shown in Sec. I1I of Ref. 7
that the pure thickness-extensional resonant frequencies are
given by

— (C, /p/)l/’n (1 P“/G“), (21)
where
P()_ kZ

(1Ph )z

X(—z(— — 2+ c'utan po 5vh "tan noh ’)

cos nyh /

—R"—R'(1 —cutannih "tanuo nih '), (22)

and

k= (el)'/cliel, R =ph'/p’h. (23)

The difference between the resonant frequencies of pure
thickness-extensional vibrations of the composite plate with
and without a driving electrode. i.e., w, — @, for the same
7y, is very important when trapping is present.

For later use in this work we now note from Egs. (3.13)
and (3.14) of Ref. 7 that when there is no driving electrode
the solution for pure thickness vibrations takes the form

u{ = (A "'cosn, x,+ B’'sinn, x,)e"", (24)
u, = (A'cos 5,x, + B’ sin 5y x,)e"", (25)
where from Eq. (3.8) of Ref. 7 we have
"= (eli/el) [ul — ul(O)], (26)
which resulted in Eq. (17) of this work. Similarly, when
there is a driving electrode and the composite plate is driven

by a voltage Ve, from Eqs. (3.26) of Ref. 7 the solution
takes the form

I-J_‘/ = u\/ - (('{x VX;/("’\II /)(’"".
[Cx,+ K + (Vx/h7)]e™, (27)

where 1{ is given in (24) and u}, is still given by (25). This
solution resulted in Eq. (21) of this work.

¢ f= (0{\/61/x)ux/+

V. STRAIGHT-CRESTED DISPERSION RELATIONS

In this section we obtain the straight-crested dispersion
relations for the composite plate, the thin diaphragm with-
out the film, and the bulk semiconductor because these de-
termine the solution functions that are used in the variation-
al condition (16). Since in this work we are considering strip
electrodes as shown in Figs. 1 and 2, we are interested in the
stratght-crested eigensolutions varying with x, in each re-
gion. In the composite region we specifically treat propagat-
ing waves when the ground electrode is and the driving elec-
trode is not present because these are somewhat simpler (less
cumbersome) to treat than propagating waves between
shorted electrodes, and on account of the small piezoelectric
coupling and the small wavenumbers of interest in the com-
posite region of the resonator, the dispersion relations and
the associated solution for the case of shorted electrodes can
rcadily be obtained from those for the case considered here
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simply by employing the appropriate relations in Sec. I11 for
the pure thickness solution in both cases exactly as in Ref. 7.

From the differential equations and boundary condi- o, = —cl&°
tions presented in Sec. II we see that for the straight-crested
waves varying along x,, which are of interest in this work, we
may take u, = Oand from Eqgs. (1), (7),and (5) we have the oly = —clif
nontrivial differential equations

X222
SNAA ) b

LACACACH A

/o2 2
— Cas +plw’,

A

ofv = —(cfy + ci)én,,
T—im + plw’, (45)
and the solution functions in (42) satisfy Eqs. (31) and (32)
clhulyy + (el + cfulyy + clul o =plid, (28) provided
chuly + (el +eduln +cluly +elig s = pli,
(29)

Syt el — 3 . s
enuiy —ehy /v =0, (30) o\,B) —0}.B, =0, — 0 \.B; + 0B,

g, A, +0,,4,=0, o\,4,+0, A4,

XA

ey + (6 + Uy + il 5, =p'iy, 3D

7

Caualyyy + (Chs + € Uy + Ol = plidy, (32)

Yy w-»
é

and from Egs. (9)-(11), (3). (6), and (8), we see that the X - L L
boundary conditions for the unelectroded plate with a O = —Cus” —Cul +po,
ground electrode take the form = — (¢}, +Cu)éN..

N

—cunl +plwt (48)

. o Ve
Oy = —C4us

clul, +clul  +elipi=0atx,=h’, (33)

wlo+ul, =0, elul, —€lig’ =0atx, =h' (34) Each nf}hesefoursystems. Egs. (43?. (44).A(46)..and (47).
;o ;o . o oo v of two linear, homogeneous algebraic equations in two am-
Chlliy + Cnlhy T eng h = €l = Gl = REpTidy, plitudes yields nontrivial solutions when the determinant of
ul{ =u\, atx, =0, (35) the coefficients of the amplitudes vanishes. Both determi-
NP . T nants for the are i inants for
cliluly +ul,) — Uiy +us,) =h"p"iis. ts for the film are |dent.|ul as are both delgrmmagh fc
the layer. Each of the two independent determinants is qua-
dratic in £°, 37, and o°. Hence, for a given & and o, each
oy, +chuh, =0, determinant yields two independent 7(7;"".5;*' and ',
(IR} . N ()
), +uy, =0atx,= - h" (37) 1."") and each y

-
-
-.'.
€l
«~
~
o~
o~

ul =u,, o, —eligli=0atx, =0, (36)

yields independent amplitude ratios
from either of the two equations leading to each of the four
determinants. Let us denote the eight sets of amplitude ratios

As in the case of pure thickness vibrations, in order to by

satisfy Eqs. (30), (34)., and (36),, we first take ¢ " in the

form given in Eq. (26), which we note also satisfies the con- All'=pu"4], Bl =v'Bl, A4}= oAy,

dition¢ / = Oat x, = 0, and substitute into Egs. (29), (33),

and (35), to obtain

NANMN,

.\-'

By =+"BYy, i=12. (49)

As a solution of the boundary conditions (34),, (39),

cliulyy 4 (el telulyy + 8l = plil, (38)(40), (35).. (36),,. and (37), we take

clul, +¢lul, =0atx, = h’, (39)

, e

L4
A Yy iy 8

! "ow oy
1

§ *C‘llu‘Ll - C‘uu‘u :h p U,

2
2 (A {me”hm‘- + B ‘/mc "””"‘)e‘g"e""’.
atx, =0. (40) mo

‘

o

As a solution of Egs. (28), (38), (31), and (32). we take 2 (A [ 4 B g Pt i g
1 1 v
m 1

v

"o T
u! = (4" + Ble yerte', (41)
" \ . e < wn ot L N S
w, — (A" Ble yemve, (42) = Y (4\e + B Ve ye e,
m i

AN YN Y
‘\:"-‘\.'-'d' "

O P

e

in which the subscriptsa.b take the values | and 3 but skip 2. R
The solution functions in (41) satisfy Egs. (28) and (38) — Z

(,“ \m‘4 Y”(’”LWL + \'\’"B \‘m(, [N )C”‘; x .cl. "A ( 50)
provided mo

-
-

-

, Substituting from Eqgs. (50) into the boundary conditions
A vol Al 0, ol A LAl -0, 3 .
Trdy + o Ao ! (43 (34),, (39). (40). (35),. (36),,.and (37) and employing

al B o/ B! 0, al B/ + o' B! ~0. (44)  Egs. (49),forh " = 0 we obtain

[ N O N
e v vy
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Equations (ST) constitute a system of eight linear homogen-
cous algebraic equations in A, B, 47, and B, which
vield nontrivial solutions when the determinant of the coeffi-
cients vanishes. For a given geometry and o the resulting
cquation yields an infinite number of roots &, each of which
determies a pomnt on the dispersion spectrum and yields
amplitude ratios from any seven of the cight equations in
Eqs. (51). Calculations are performed by first selecting val-
ues of erand &, which enable the determination of the 1, and
1., from the two independent 2 - 2 determinants obtained
from Eqs (43) or (44) and Egs. (46) or (47). respectively.
These values of 37, and 1, enable the determination of the
amplitude ratios gz " v ", 22", and 1+ from either of the equa-
tons in Egs. (43), (44), (46), and (47). respectively. Then
all guantities in the determinant obtained from Eqgs. (51)are
known and the resulting determinantal equation either is or
15 not satistied. I it is satisfied the values of  and & selected
are correctand constitute a point on the dispersion curves. If
not, change cither o or & and repeat the calculation until the
boundary condition determinantal equation is satisfied.

The perunent dispersion curves for the aluminum-ni-
tride film on the gallium-arsenide layer composite plate
have been caleulated and are shown in Fig. 4. We do not
distinguish between the electroded film with shorted elec-
trodes and the unelectroded film in the figure. This is done in
great detail in Ref. 7. Furthermore, when required, the dif-
ference between the two can be calculated from (o0 -- &)
given in Sec. 1. The dispersion curves are for a film thick-
ness of 7 um and a diaphragm thickness of 14 f1m.

In the region of the bulk semiconductor the solution is
considerably simpler than in the composite region of the res-
onator because there is only one section with traction-free
upper and lower surfaces. However, although this problem
can be simplified even further by placing the coordinate AVS-
temin the center of the plate, it 1s not convenient for us to do
this in this work because the solutions in each region are put
together in the variational equation (16) when the solution
to the forced vibration problem is obtained in the next sec-
tion. In the region of the bulk semiconductor the differential

2243 J. Appt Phys , Vol 60.No 7, 1 October 1986

SO AV O+ D) = By )] -0,

+ B -, ] = o,

= 0. (5

(
equations are identical with those given in (31) and (32).
but with carets over the variables, and which for clarity we
write here in the form

Clliy g+ (O g o Calty =iy,

Caslly, 4 {C)y + oy Vi + Call o =p'l\. (52)
From (6) and (15) with &, = 0 the boundary conditions
take the form

N
"
~—

Cul F AL =0 atx, =0andx, = — i, (

w/2mMHz)
300 v+
q

B —
—
-+
<+
S

50 0 50 100 150
Imé¢ (103 m™") Ret

FIG. 4 Dispersion curves for the composite region consisting of an alumi-
num -nitnde lm on a galbum arsenide layer.
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G}, +85,) =0atx,=0andx,= —h". (54)
As a solution of (52) consider

i, = (46" + Bre yetve, (55)
which satisfies (52) provided
oA 40 AL =0, gLA} 434 =0, (56)
o‘,,é‘,ﬂa‘”f}“:o, —0"”3‘,—}-0\32}_“:0. (57)

where o },, 0 ;. and o}, are given in (48). Each of the two
systems of linear homogeneous algebraic equations in two
amphitudes vields nontrivial solutions when the determinant
of the coeflicients of the amplitudes vanishes. Both determi-
nants are identical and, in fact, are the same as the earlier
determinants for the layer. Thus, for a given & and « each
determinant yields two independent ;] (;]i",;){z’) and each
y." yields amplitude ratios from each system of linear alge-
braic equations, i.e., (56) and (57). Hence, there are four
amplitude ratios, which we denote by

~

4, = /1"43 v ;1‘ P’ \"‘ii‘ v (58)

in which the ¢ and 1 are the same as in (49).
As asolution of the boundary conditions (53 ) and (54),
we take

N
K ~ ~ .
l}“ L ,“ (' \‘”’L"" o\ n B \lmc LA )L‘ILl L)Ivrl‘
-
e i
- . D g et mam L ey 1N el 5
by — N e le + B Ye ye'te. (589)

o
Substituting from (59) into the boundary conditions (53)
and (54), we obtain

Z [’:1 viv'(“li.‘;-‘/"m <)
” 1
CBYLET A o,

S A G+ 5 e BYC a8 ] -0,
d 1

: RO . N it
S A tedi s ae
“* |

VR G e et ] e,

- [’4 «.‘r:( ;""/'I\n s ; Yo L LA

—
'

[ k“”( f],, v ;‘)('”‘/ " ] 0. (60)

Equations (60) constitute i system of four lincar bemogen-
cous algehraic equations in A 7 and B 7 which yiclds nontni-
vial solutions when the determmmant of the coefticients van-
ishes. At thns point it sheold be noted that if 47 and B U are
written as complex conjugates, the system can be simphfied
into solutions respectively symmetnic and antisymmetrie
shout the centerline ol the piate, winch may be treated sepa-
cately. THowever, this s pot saaacalarly convenient for us
because we need both the svimmeetrie and antisymmetrie so-
lutions and we have abready treated the composite plate,
which programs are readily maditied for this case Clearly.
this solution holds for the region of the thin diaphragm with-
out the film provided only that s replaced by . Calcula-
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w/2n{MHz)
‘F\/
300+
-1»
2004
\/
100 T
760 50 ] 5‘0 160 IQO
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FIG. §. Dispersion curves tor the gallium-arsemide layer without the thin
film

tions are performed as in the case of the composite region
with the given attendant reduction resulting from the elimi-
nation of the film.

The pertinent dispersion curves for a 14-um-thick gal-
lium-arsenide diaphragm have been calculated and are
shown in Fig. 5. The lowest 17 real dispersion curves for the
bulk gallium-arsenide plate have been calculated and are
shown in dimensionless form in Fig. 6. For the fundamental

P

4
/'.
7
+ . 4o — -t 4 e
0

20 ac 60 80
Ref (10 m™")
F1G 6 Dispersion curves for the gallivm: arsenide wafer with 2 the dimen-
siondess frequency normahized with respect to the first thickness-shear fre-
quency
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essentially thickness-extensional resonance for the compos- wafer thicknesses up to 8 mils for which there are 30 real
ite dimensions mentioned (around 132 MHz), this number dispersion curves for a frequency of 132 MHz. However, we
of dispersion curves is for a gallium-arsenide wafer thick- do not bother to show the figure for more than 17 in this
ness of about 5 mils. In this work we perform calculations for work.

J

V. FORCED VIBRATIONS OF COMPOSITE RESONATOR

In this section we determine the essentially thickness-extensional vibrations driven by the application of a steady-state
driving voltage to the strip electrodes on the surfaces of the piezoelectric film of the composite resonator shown in Figs. 1 and
2. Since we include radiation into the bulk semiconductor, we can use the solution to calculate the Q at resonance of the mode
resulting from radiation into the bulk semiconductor.

In accordance with the earlier discussion we take the approximate solution in the form

A f ol B

LAg— . ey Vxye G-
=/ _ B 1 - 5 =S (BrgsiB)
u/= ¥ KPu]"” — — 06, @, = Y KWu"”,

A1 ciih A1

n ) n LN

u;,’: Z K““uu""’, U; — Z K(“)M:”). l;; — Z K(y)a:‘(m, (61)
[

- « y=1

where 71, n, and 7 denote the number of branches of the dispersion curves included in the electroded composite, unelectroded
composite or diaphragm and bulk semiconductor, respectively, which are given in Figs. 4-6. The eigensolution functions
/v, g oy S0yt @7 denote the solution functions that satisfy the homogeneous differential equations and the
boundary conditions on the major surfaces for each of the respective regions and which were presented in Sec. IV and yield the
dispersion curves shown in Figs. 4-6. At this point we note that since the driving voltage V is applied over the region
— I < x, <, the eigensolution functions in the electroded region of the composite resonator will be symmetric about x, =0
and, consequently, the factor ¢“* in (50) will be replaced by (¢“*' 4+ e “*)/2 in the expressions for u{ and u} and (e*"
—e "*/2iintheexpressions for u{ and u}, respectively, in (61), ,. Since the solution functions @/, &, u /', u}}', and

u ’
A

f)' 7 satisfy the homogeneous differential equations and boundary conditions on the major surfaces for each of the respective
regions and the solution is symmetric about x, = 0, when (61) will be substituted in (16) all that will remain may be written in
the appropriate form

dx,

¢ / x, - d

Y ('{;Vx‘ h! _ o )
—f f plw’ — e Sul dx dx, — J‘ (T, ul +T{ suf)
0 Jo “h t
h

N )
+J- (T, i +T‘,‘(§t‘4§)l X+ %f [(T3, =Ty, (85, +uy)
h' x, d ht
FAT =TSy + 8uy) + () — ) (8T, +8T5,) + (@ —w) (8T, +6T) ], dx,

h(
+ %f (Tl =T /)83 +6ul) + (Tl — T4)(8a! + buf)
(

)
+ (@] —ul)ST{, +8T{)) + (@ —ul)(8T{, + 6T {})],, ., dx,
1 (° . \ . =~ N
+ 7[ [(T} = T30 8w} +8a) + (T = T4,)(Buy + 63
h' R

F (U — @) (BT}, +6T3) + (w0, — 3)(8T}, +6T3) )., 0 dx, =0, (62)

for the case when trapping is not present and the film extends over the entire diaphragm, as shown in Fig. 1. When the film
ends at the edges of the electrodes, as shown in Fig. 2, the fifth integral in (62) is not present and the second integral is replaced
by

hf
_j (Tl 8l + T/, 6al).  dx. (63)
(§]

When trapping is present with a notch under the electroded region, as shown in Fig. 7, the fourth integral is taken from — A*
t0 0 (instead of — A" to 0) and there is an additional term,

.
+ f (T3, 8u, + T, 0wy, dvyy, (64)
.

in Eq. (62).

Since the solution functions in (61) are fixed, only the K /", K ', and K """ are varied when (61) is substituted into (62).
Accordingly, substituting from (61) into (62), employing (3), (6), and (50) with the appropriate aforementioned replace-
ment in (61),, and (59), and performing the integrations, we obtain an equation of the form
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e
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FIG 7 Cross section of s composite resonator with the Laver notched under A
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e,

A )

-

MR A = Nm =

and 7, 7Y, 0 v, 0 )" are obtained by replacing f with s in
(70). The expressions for the unelectroded composite or dia-
phragm and bulk semiconductor regions, respectively, i.e.,
ol ol ol n o Slo Y and R AT, 000
O " are obtained by replacing the quantities with the bars in
(70) by the associated quantities without bars for the unelec-
troded composite or diaphragm or with carets for the bulk
semiconductor. Furthermore, in (66) we have employed the
additional definitions

hoti = = FrAly 4 oAl —FHA L 4 Al
hitl o= —FB o AL —FUB + ol AT
hitl o = BA L 4 T B -G A Y + B
hits = — LB+ oliB U~ G[B  + oliB ],

(7m)

and the 4 s for the other regions are obtained by replacing the
quantities in (71) by the appropriate quantities associated
with each region. Since the variations in (65) are arbitrary,
we obtain the inhomogeneous linear algebraic equations for
the X', K'“' and K'"' in the form

n

4
>
’ 4
4
]

T B=1,,0,

AN ,‘u’” . }; K /"l_)“” + 2—: I:»q AZ)‘[; =0Q.
T |

NAKca - N K h =00 p=loi (72)
-‘-"‘. ot L

which constitute i+ # + /1 inhomogeneous lincar algebraic
equations for nK' - nK' and nK7

VI. QUALITY FACTOR RESULTING FROM RADIATION

In this section we caleulate the quality factor due to
radiztion into the bulk semiconductor for cach of the three
cases from the analysis presented in See. V.o Although the
sofution may be obtained from the analysis in Sec. Voat any
driving frequency for which all the pertinent dispersion
curves are available, in this work we are interested in the
solution only at the fundamental essentially thickness-exten-
sional resonance for cach of the three configurations. Tt is
clear from experience' ™' that under these circumstances we
need consider only the cssentially thickness-extensional
branch in the composite region (either electroded or not) of
the resonator, which is the curve labeled 1 in Fig. 4. How-
ever, in the thin region of the semiconductor without the film
and the bulk semiconductor all pertinent dispersion curves
shown in the respective Figs. 5 and 6 must be included to
obtain accuracy. The use of only one branch for the compos-
ite region means that we always haveii = Landn - 1 for the
configuration shown in Figs. 1 and 7 but not for the configu-
ration shown in Fig. 2, for which all curves shown in Fig. §
must be included.

As usual, the guality factor Q is defined by

Q (K+ UV/E™, (73)

where
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FIG. 8 Quality factor vs wafer thickness when trapping s not present fot
the composite resonator configuration shown in Fig. 1

1! 1 d "
K= ———j dt—Ref a'xlf -—pu, ¥ dx,
T Jo 2 d no 2

1 ' 1 o h' l
U= —f dt — Re (f dx f — e, u,,u*
I 2 y ! .2 [ nt Uy

et ut, + 2oy Uty
Foegg(uyy Fua M +uy )*]dx;).

! )
E" = —2f dz%Ref (=T,i*), .dx. 74
0 ht

in which T is the period of the vibration and we have taken
the liberty of writing the integrals in (74), , over discontin-
uous functions to achieve brevity. For a given geometry and
mode, resonance is determined by obtaining Q over a (nar-
row) range of frequencies and finding the frequency for
which Q is a maximum.

In performing the calculations we have found that it is
imperative that all radiating plate waves in the thick region
of the gallium-arsenide be included in order to achieve accu-
racy. Since at a given frequency the number of radiating
waves in a plate goes up significantly with thickness, we have
considered gallium-arsenide wafers no thicker than 8 mils at
a frequency around 132 MHz, for which there are 30 radiat-
ing plate waves. Results are presented for wafer thicknesses

+
! ! ' ' '
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2000+ i | b
| |
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. i
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J . v ) b | A
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FIG. 9. Qualny factor vs wafer thickness when trapping 1s not present for
the compasite resonator configuration shown in Fig. 2
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FIG 10. Quality factor vs distance from edge of electrode to edge of dia-
phragm when trapping is present for the composite resonator configuration
shown i 19g 7 The width of the electrodes 2/ varies from 580 10 420 gm.

ranging from 4 to 8 mils because this is considered to be
within the practical range. All the results presented are fora
film thickness of 7 ygm and a diaphragm thickness of 14 m
and the Jateral dimensions of each configuration were ad-
justed slightly to maintain the same resonant frequency for
computational convenience. Since the calculated Qis a very
rapidly varying function of the wafer thickness, calculations
had to be performed for very small increments in thickness,
e, 1 gm, in order to get all the peaks and valleys in the
interval.

In the absence of trapping, for the case shown in Fig. |
the results are plorted in Fig. X, which shows the aforemen-
tioned sharp variation in Q with wafer thickness. Tt can be
seen from the figure that the highest @ obtained is about
4750 and the lowest is about 10, and there are about 10 peaks
for thicknesses between 4 and ¥ mils. The highest vallevs
have Qs of about 700 and 2000. respectively. For the case
shownin Fig. 2. the results are plotted in Yig. 9. which shows
variations in 0 with waler thickness similar to Fig. b, but in
this case the @ 's are considerably higher. It can be seen from
the figure that the highest Q obtained is about 15 000 and the
lowest @ is about 200. Calcuittions were performed when

U, \

N

4‘\&?11 ,'"‘_ !-\\ f‘ \I'\'T]pl\ﬂf‘lf\\ﬁ/[v\j T

'
¢ 3

PLGe T By pical Cichnoss disphiceaant deng il ¢rface of the Composite
sesonates for the configuration shown o Fop
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Us

I '

FIG. 12 Typical thickness displacement along the surface of the composite
resonator for the configuration shown in big. 2.

trapping was induced in the fundamental mode by notching
the diaphragm under the electrode as shown in Fig. 7. As
expected, the @ duce to radiation can be made as high as we
wish simply by extending the lateral dimensions of the film
and diaphragm. Figure 10 gives Q as a function of (d — /),
i.e., the distance from the edge of the electrode to the edge of
the diaphragm. [t can be seen from the figure that Q in-
creases very rapidly with (d - /) and atd = 2/, 0 = 70 000
for this geometry. For these calculations the wafer thickness
was 6 mils. Even when trapping is present the Q is a varying
function of wafer thickness, but the range of the variation is
less than 1/10 of that when trapping is not present, which is
not of interest since the Q with trapping is so much higher
than the Q without trapping. In interpreting the foregoing
information it should be remembered that the high Qs cal-
culated should be higher than the actual Qs because the
material Q and the @ due to radiation into the air are not
included. The results discussed above mean that in order to
obtain reasonably high @ when trapping is not present, for a
given wafer thickness the thicknesses of the film and dia-
phragm must be very precisely selected.

Since all conditions are natural conditions in the vari-
ational condition in (62), the approximate solution does not
expressly match the mode shape at the interfaces unless it is
exact. Consequently. the extent to which the calculated
mode shape matches at the interfaces gives an indication of
the accuracy of the approaimate solution obtained. Typical
plots of the w« ~displacement field. which is the large one for
the essentially thickness-extensional modes considered here,
for the configurations shown in Figs. | and 2 are shown in
Figs. 1l and 12, respectively. It can be scen from the figures
that the 1 -displacement ficld matches quite well at the inter-
faces. Consequently, we can conclude that the approximate
solution obtained is quite accurate.
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1. Introduction

In a2 Tecent analysisl’2 of the piezoelectric

thin film on semiconductor composite resonator
vibrating in an essentially thickness-extensional
mode it was shown that the quality factor (Q) due
to radiation into the bulk semiconductor is a very
sharply varying function of the ratio of the
thickness of the resonator to that of the film if
trapping is not present, but not if trapping is
present. The treatment employs a very accurate
but extremely cumbersome variational approximation
technique and is restricted to the case of strip
electrodes and diaphragnms.

T T

In this work a perrurbation analysis of the Q due
to radiation into the semiconductor wafer is pre-
sented, which is considerably less cumbersome to
use than the earlier variational treatment and is
not restricted to the case of strip electrodes and
diaphragms. In the treatment the resonant mode of
interest is determined from the equation for trans-
versely varying essentially thickness-extensional
modes in composite resonators” and simple approxi-
mate but very accurate conditions at the edges of
the diaphragm. This resonant mode is then used to
determine the near field radiation into the semi-
conductor wafer Py means of a variational approxi-

-

: 4 . .
mation procedure , Of course, as in the earlier

workl’z, all radiating plate waves in the wafer are
included in order to achieve accuracy. Finally,
the mode in the composite resonator and the radia-
tion field in the wafer are employed in a perturba-

tion inCegrals to calculate the Q, Calculations
are performed for the cases of rectangular elec-
trodes and diaphragms and strip electrodes and
diaphragms both when trapping is and is not
present. For the case of strip electrodes and
diaphragms the calculated results are shown to be
in good agreement with the earlier more cumbersome

S TR T T T e WS AL T e . T

direct calculacionsl’

2, Perturbation Procedure

Since the coupling is small in the piezoelectric
thin film, we need consider only the elastic por-
tion of the equation for the first percturbation of
the gigenfrequency, which may be written in the

form

Aunﬂu/Z%,w‘wu-A“, (1)
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where w, and w are the unperturbed and perturbed
eigenfrequencies, respectively, and

- - b 5
H, ‘S[ni(rijgj u Ty, 6s, (2)

where n, denotes the outwardly directed unit normal

to the surface S of the resonator and the normal-~
ized displacement field gg is defined by

el .
gljf'u';/b‘u, N o= J Du;u;dV, (3

in which u" denotes the purely real mechanical

displaceme%t field associated with the mode of
interest in the composite resonator and T;, denotes
the associated stress tensor. A cross-section of
the composite resonator attached to the semicon-
ductor wafer ic shown in Fig.l. A schematic plan
view of the assumed composite resonator is shown

in Fig.2 along with the assumed approximate edge
condition (u3- 0). Thus, for the problem at hand

the surface S in (2) denotes the surface along
which the semiconductor portion of the composite
resonator abuts the wafer. The calculated mode in
the composite resonator shown in Fig.2 results in

tractions :L and displacements U’ that are applied

to the wafer along the surface at which it abuts
the resonator as shown in Fig.3. These tractions

tz and displacements u, then cause radiation fields

in the wafer, which are calculated by means of a
very accurate variational approximation procedure .
These radiation fields in the wafer produce a
reaction back on the composite resonator along S.
The stresses Tij and displacements uj in (2) denote

this back reaction field,
Since the radiating fields in the wafer are chosen
to satisfy the differential equations in and

boundary conditions on the major surfaces of the

wafer exactly, all that remains of the appropriate
variational principle in which all conditions are

natural conditions is given by“

I (tz'“'krkz)b“l.d’ + Ink(ul-il)b‘rklds-o. (&)
SN SC

1986 ULTRASONICS SYMPOSIUM — 377

I T P o N T N L T o S
' s e T A LT L L NN AT AT Y A S - .- -
N R N N A M A N AT A I T P i e L S A N R A S R Td

A B A St Y Tl A R e W SR SR e = ®> & = = om -



a"a"a’a

-'-o..ll

P e i
BN M

p i )

R AR A S Gl G A 00 00 2 N AR AR

In (4) El and Gl are known from the resonant eigen-

: b o -~ a
solution T, , u, and 4, and T, , are found from the
expressions for the solution field radiating into
the yafer. At this point we note that the reaction

Tkl from the radiating field is complex, the

real part of which yields a small change in fre-
quency when substituted in (2), which is negligible
and not of interest here, and the imaginary part of
wnich yields the attenuation due to radiation into
the wafer from (2) which is sought here., From the
well-known relation wEw - iwh/ZQ and (1), we obtain

d,,

2
=-iw /H . 5)
Q wb " (
J. Transversely Varying Thickness-Extensional
Modes

As noted in Sec.2, a plan view for the determina-
rion of the mode of interest in the composite
resonator is shown in Fig.2 in which the - denotes
the electroded region, the §,the side region, the
T, the top (and bottom) region and the C, the
corner regions. This notation is essential for the
treatment of the trapped modes, but is not needed
for the untrapped modes because in the untrapped
case the edges of the electrodes are relatively
unimportant. It has been shown in Sec.5 of Ref.3
that the homogeneous equation governing the essen-
z:allv thickness-extensional modes may be written

1n the focrm
2. 2.n .
2T¢ 37¢E —£f 22 n fon
”n<. T 2)' €330gat T2 E 20, ®
2%y 2%,

where 0 denotes the order of the pure thickness
mode in the composite resonator, both the super-

script and subscript f denote the film and in T

in an

B i L roded regionwhile S =7

g, Lo an electrode g ien = gn
unelectroded region, Furthermore, it has also been
shown in Sec.V of Ref.3 that at an interface between

electroded and unelectroded regions we have the

A .0 n
continuity of f and df /dn, where d/dn denotes the
normal derivative. Within the aoproximation made

in obtaining Eq.(6) it may readily be shown®~3

for either completely free or completely fixed
conditions (here completely fixed) along the edges
of the diaphragm shown in Fig.2, the appropriate

that

condition is £' =0, The expression for the coeffi-

cient Mn' which is very important because its sign

indicates whether trapping is or i1s not present in
the flat composite plate configuration, 1s given in
Eq. (4.44) along with (4.41), (4.62), (4.37), (4.38)
and (4.33) of Ref.] 3nd clearly 1s much too cumber-

some to present here’,

It has been shown in Sec.V of Ref.3 that the dom-
inanc u3-displacement field accompanying the mode

is given by

fn fn n sn sn_n . S
Uyl Uy £ (KI'XZ’K)' uy = u £ (x,,x,,8), (7)
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where the superscripts £ and s
and semiconductor diaphragm, respectively, aod U

denote the film

3
represents the thickness dependence only and is
given by

fn fln o fin (-]
o¥3 A3 cos ﬂfnx3 +B3 sin nfan’
0 < xq < hf,
sn sln (=) sln . o
= T + Ml
°u3 A3 cos ﬂsnx3 33 sin snxl’
0>x3>-hs, (8

and the amplitudes are given in Egs. (5.20) of
Ref.3. Since only the semiconductor diaphragm
abuts the wafer as shown in Fig.l only the variable
in the semiconductor are relevant here. However,
in order to calculate the tractions t, and displace

2
ments ul that the mode in the composite resonator
exerts on the wafer as shown in Fig.3, we need the
s s .

and u_ in the

1 2
semiconductor diaphragm in addition to uz. These

associated displacement fields u

functions differ for the different £ and assocl-

sn . :
ated uj , which occur in the different regions for
the trapped case but not for the untrapped case.

~ n .

5ince the f has the same functional form over the
entire composite resonator in the untrapped case as
it has over the electroded region in the trapped

s s ) R
case, we write u; and u, for this functional form
<

1
for £ onlys. It has been shown in Sec.V of Ref.3
that for
£ = cos Exl cos 3x2elwt, (9)
which is the above mentioned fn'
s .8 - - iawt
up = % - (xJ) sin $x; cos Vx, e .
k]
3 _ _ )
ui = = Ts(x3) cos Ex, sin wx, ech’ 10)
¢
where
s sl .o s2 . s_o sl o
= x., + X, + 9,
b d Al sin st3 A1 sin x TE‘} B1 cos X3
2 -2 =2 2
+Bi"sinx_s‘.‘l:x3, TSV, (1)

and x° and the amplitudes are given in (4.30) and
(4.26), respectively, of Ref.3.

As already noted,in the uncragped case for the
fundamental mode for any n, f is given by

" = cos Exl cos Vx: elut, (12)
where from the edge conditions8 for the mode of

lnterest

Te/2d, Vo= amn

’
with which the unperturbed resonant frequency 'y

may be obtaincd from8
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In the trapped case the expressions for 2 in each
ofsthe respective regions shown in Fig.2 are given

b - -
y _ s >(x1 L)

= - ns
?’-Ecosi_x cosw.,, £ =(Ee

1
§(x -2) _
+ £ 4 ) cos vx.,
-v(x.,-b) v(x -b) _
fr-(ie < #E& 2 } cos 3§,
-F - - - -f (3 - -
nC C ;(xl L) V(x2 b) < g(xl 2 +-v(x2 b)
f = Ele +L.e
E(x,-4)-vi(x,-b) E(x,=-2)+v(x _~b)
+E§e ! : +E§e 1 - (15)

where § and Vv are determined from the lowest roots
of the transcendental equations

(1 +e 28050y
L= & ———r——

unl

¢ tan

-2
- (14 2VD),
S tan Gi=v 2Ee ) (16)

-2
1-e 2v(w-b)

with the aid of (6.7) of Ref 3, All amplitude
coefficients in (15) are known in terms of E from

&

the relations

N E cos Ii ET - E cos W
3 = 1 =2v(w-b) ’

C E cos £i cos b
a- -2§(d-i))<l -1v(w-o)) ’

[+ "\a(wb)C c __ -25(d- t)c
Ey == B By e B
o -26(d-£)=2v(w-b) C

E, =e °° - E - (17)

As already noted, ui and u; are known from £ in

the electroded region from the relations (10) and
(11) and for the other regions equivalent rgla-
tions which are not shown here are employed .

4. Variable-Crested Waves in Wafer

In this section we obtain the solution functions
for the near field waves with slowly varying crests
and the associated dispersion relations. The
stress equaticns of motion and the linear elastic
constitutive equations for the semiconductor wvafer

0
may be written in the tensor forma'1 P11
~s Sas A4S s
.= T, .= 18
ST RS RS YA a®

where the notation is conventional, and we note
that the equations are too cumbersome to write out
in detail, From either Figs.l or 3 we see that
the boundary conditions on the major surfaces of
the semiconducting plate may be written in the
form

A AL AN

~ -

S - = - - s
T3j 0 at Xq 0 and X3 h™ . 19)

In considering waves radiating in the +x, -direction,

: . - 8 2st
we first note that since v is small , T 2, is an

order of magnitude smaller than T13 and ul, and U

is an order of magnitude smaller than Gi and

-differential equation and 1

0

s
Hence, 4, the x are

2

negligible for radiation in the xl-direccion. 0f

course, equivale * statements hold for radiation
in the x,-direction since § is small. Accordingly,

for waves with slowly varying crests and propagat-
ing in the +x,-direction in the near field, we

; 1
write
*(m)x
3% = cos vx Z ¢ +(m) 3
a
m=]
_a(m) 2
- -d)
2-m) T ¥y TRs(x w
+ & ™ e Ye Lot o, (20)

for either the untrapped case or the electroded
region for the trapped case and we do not bother

to write the solution for any other regions for the
- -~ -~

trapped case. The ﬁ(m), Ea(m), Ea(m) and C(m) are
determined by satisfying (18) and (19) in the

2
usual waya’"’J. From this solution the lowest 17
real dispersion curves for the bulk gallium-
arsenide plate have been calculated and are shown

in dimensionless formin Fig.4. For the fundamental
essentially thickness-extensional resonance of the
composite resonator consisting of a 7 um thick
aluminum-nitride film on a 14 um thick gallium-
arsenide diaphragm, which is around 132 MHz, this
number of dispersion curves is for a gallium-
arsenide wafer thickness of about 5 mils. In this
work we perform calculations for wafer thicknesses
up to 8 mils for which there are 30 real dispersion
curves for a frequency of 132 MHz, However, we do
not bother to show the figure for more than 17,

Similarly, for waves with slowly varying crests in

the xl-direccion and propagating in the +x2-

direction in the near field, we have
2 (S (m)

T a(m) s+ @) " %3
1 Z Cig e

m=]1
-
~i€(x,~w) |
S(x, iwt

)
E;('“)e e Pt be2,3, (21)

for the same types of regions as in the previous
case, From this solution we obtain the propagating
dispersion curves for near field radiating waves

in the xz-direction. The dispersion curves are

just like those in Fig.4,
5. Variational Analysis of Radiation into Wafer

In this section we determine the waves radiating
1986 ULTRASONICS SYMPOSIUM — 379
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into the semicondu~tor wafer due to the tractioms
and displacements resulting from the mode in the
compasite resonator by means of a variational
approximation procedure, as indicated im Sec.2,
Since the near radiation fields emanate from the
edges of the diaphragm, which are normal to x and

x,, respectively, we may determine the near fields

2;
radiating in the %" and xz-directions separately.

Accordingly, for radiation in the xl-direc:ion,
from (&), we obtaina

W

[ e I (3,88 + 15 3)|x -a %3 7
- RS

)
2S5 A S =1
I [Tnéu1 +( le )6u 1=d dx3
s
s
o
e
s

S\ 25 _ aS S = e
8, 8T, “3”13” ddxj:) o,

-t
where, as already indicated, the forcing terms
resulting from the mode in the composite resonator

are 13
- 13
we simply interchange subscripts 1 and 2 and

replace w by d.

s I .
and gl. For radiatiom in the x ,-direction

For radiation in the xl-ditectxon we ncw expand

the solution in the wafer as a sum of waves with
slewly varying crests in the Xx.,-direction and

propagating in the x, -direction, which were dis-
cussed in Sec.4 and Are gaven in (20). Thus

(Quh]

where each of the Gi(a)

(20), N denotes the aumber of branches of the dis-

are of the form given in

persion curves required8 for the N propagating

s(a)

plate waves, Since the u are fixed, only the

ﬁic) are varied when (23) is substituted into (22),

Accordingly, substituting from (23) into (22},
employing (18)2 and performing the integrations,

we obcaxn an equacion of the form
=(@), 5 5 (2(8) .
Z[Z 700500 T m0,
-‘-l-l Qa

where the expressions for A:a and C; are too

lengthy to present here. Since the variations in
(24) are arbitrary, we obtain” the inhomogeneous

linear algebraic equations for the K(a) in the form
g (a)
~{a) S S - "
z Ks Acr:? -Cs, =1, ....1, (25)
a=1
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In a similar way for radiation in the xz-direc:;on
’
we obtaina

N
), T T o
Z Ky Ta g ==Cp, 6=1,.. 8. (28,
y=1
Equations (25) and (26) each constitute N inrhomo-

geneous linear algebraic equations for the N un-

s (a) e a i)

knowns K from (25) and the N unknowns K
ala) ¢
from (26), Tespectively. Wwnen the XS') arc i

s v)
K

have been determined, the near field rac:a-

ting solution is kncung.
6. Quality Factor Resulting from Radiation

In this section we calculate the Q due to rac:a-
tion into the semiconductor wafer from the
analyses presented in the previous secZions,
Accordingly, from Secs.3-5 we see that the per-

turbation integral takes the form8

Substitucing the imaginary parts of the soluiicn
determined in Sec.5 into (27), we obtain®

.

W o] Ki
Ny C T T a@ia3ie)Ls
e “Lf“xz A Rl RS
- -hb Q‘l,
s(a)a 5(0) ] dx
¥ ;K L x = O
d o Q
.
+_|'d~<1 I Z[.h(-.é")a:m)h
IS ) 3
- -hS Y.[
+ (- l\_r(Y).L(Y> ] dx,‘] s 28
~- )
X 2w

which may now be used to calculate the Q from (3).

Of course, as Ln the earlier workl" all rad:iacing
plate waves in the thick region of the gallium-
arsenide are included to achieve accuracy. Since
at a given frequency the number of radiating waves
in a plate goes up significantly with thickness,
when trapping is not present we have considered
gallium-arsenide wafers no thicker than 8§ mils a:
a frequency around 132 MHz, for which there are

30 radiating place waves, Results are presented
for wafer thicknesses ranging from 4 mils to

8 mils because this 1s considered to be within the

- L%
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practical range. For the untrapped case the
results presented are for a film thickness of

7 microns and a diaphragm thickness of 14 microns.
Bath strip diaphragms 600 microns wide and square
diaphragms with lateral dimensions of 600 microns
x 600 microns were considered., The strips a{e
treated for comparison with the earlier work

For the trapped case the results presented are

for a film thickness of 12 microns and a diaphragnm
thickness of l4 microns because the trapping is
considerably better for this combination of thick-

nesses than the other at the second thickness modeE
For this combination of thicknesses the second
chickness mode is around 250 MHz., In the trapped
case both strip electrodes 500 microns wide and
square electrodes with lateral dimensions of

500 microns > 500 microns were considered. The
lateral dimensions of both the strip and square
diaphragms was varied and the wafer thickness is

€ mils.

In the absence of trapping for the strip case the
values of Q calculated from Eq.(5) of this work

are plotted as the solid curve in Fig.5, in which
the dotted curve from Fig.8 of Ref.l is also
plotted for purposes of comparison. It can be seen
from the figure that the agreement is quite good.
However, although the highest Q's calculated in
this work are very nearly the same as those
obtained in cae earlier more cumbersome direct

calcula:xonl'", the lowest Q's calculated by
means of the perturbation procedure tend to be
nearly an order of magnitude higher than thoie
calculated by the earlier direct procedure '™, We
are not absolutrly sure of the reason for this
discrepancy, but there are two possibilities. The
perturbation procedure might be tending to lose
its accuracy for low Q because of the increased
radiation or the rescnant frequency might not have

been sufficiently precisely determined by means of

-
the earlier direct procedurel" for the accurate
determination of the lowest Q values. However,
Fig.5 reveals that the highest Q's calculated by
the perturbation procedure are consistently
slightly higher than those calculated using the
earlier direct procedure, which tends to support
the second possibility. The figure also shows
that the location of the peaks and valleys of Q
with wafer thickness determined by means of the
perturbation procedure is in quite good agreement
with those obtained from the earlier direct

9
.-

caICulation1 Also in the absence of trapping
the Q's calculated from Eq.(5) for the square
diaphragm are plotted in Fig.6. It can be seen
from the figure that the peaks and valleys are in
essentially the same positions as in the strip
case, but that the Q's are considerably lower,

) roughly between 1/2 to 2/3 of the values in the

} strip case. This is as expected because of the
!

)

radiation in two orthogonal directions for rect-
angular diaphragms, When trapping is present the
Q's calculated from Eq.(5) for both the strip and
square case are plotted in Fig.7 as a function of

| (d-1), i.e., the distance from the edge of the

: electrode to the edge of the diaphragm. 1t can

\ be seen from the figure that, as expected, Q

."". ‘{- - - - - M .'-' . .‘D— - - '.' .l'-'l'
R S AN G L O A O PSS N S . SN

-’
.

increases very rapidly with (d- £) and for the
same value of (d- £) the Q is about twice as large
in the strip case as in the rectangular case. If

4
2P B

P

a film thickness of, say, 8 microns had been 5|
employed, tge required (d - £) for good Q would be .
much larger [
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A PERTURBATION CALCULATION OF THE QUALITY FACTOR OF THE
PIEZOELECTRIC THIN FILM ON SEMICONDUCTOR COMPOSITE
RESONATOR RESULTING FROM RADIATION INTO THE WAFER

D.V. Shick and H.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

ABSTRACT

In a variational analysis of the vibrations of the piezoelectric
thin film on semiconductor composite resomator it was shown that the
quality factor (Q) due to radiation into the semiconductor wafer is a
sharply varying function of the ratio of the thickness of the resomator
to that of the film if trapping is not present, but not if trapping
is present, The treatment is very cumbersome to use and is restricted
to the case of strip electrodes and diaphragms. In this work a
perturbation procedure for the calculation of the Q due to radiation
into the wafer is presented, which is considerably less cumbersome to
use than the earlier treatment and is not restricted to the case of
strip electrodes and diaphragms. The resonant mode of interest is
determined from an equation for transversely varying thickness modes
in composite resonators and simple approximate but accurate conditions
at the edges of the diaphragm, from which the radiation into the wafer
is obtained using a variational approximation procedure., The resonant
mode and resulting radiation field are employed in a perturbation
integral to calculate the Q. For the case of strip electrodes and
diaphragms the calculated results are shown to be in good agreement
with the earlier more cumbersome calculatioms. In addition the
perturbation calculations are performed for the case of rectangular

electrodes and diaphragms.
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1. Introduction

The composite resonator consists of a uniform thin layer etched
in a small well-defined region of a semiconductor wafer to form a
diaphragm, upon which is deposited a thin piezoelectric film along with
the electrodes to form a resonant region directly on the wafer. 1In a
recent analysis1 of the composite resonator vibrating in an essentially
thickness-extensional mode it was shown that the quality factor (Q) due
to radiation into the bulk semiconductor is a very sharply varying
function of the ratio of the thickness of the diaphragm to that of the
film if trapping is not present, but not if trapping is present. A
brief explanation of the meaning of the words "energy trapping" is
given in the Introduction of Ref.l. The treatment employs a very
accurate but extremely cumbersome variational approximation technique
and is restricted to the case of strip electrodes and diaphragms.

In this work a perturbation procedure for the calculation of the Q
due to radiation into the semiconductor wafer is presented, which is
considerably less cumbersome to use than the earlier variational treat-
ment and is not restricted to the case of strip electrodes and diaphragms.
In the treatment the résonant mode of interest is determined from the
equation for transversely varying essentially thickness-extensional
modes in composite resonators2 and simple approximate but very accurate
conditions at the edges of the diaphragm, This resonant mode is then
used to determine the near field radiation into the semi-conductor wafer
by means of a variational approximation procedure3. Of course, as in
the earlier workl, all radiating plate waves in the wafer are included

in order to achieve accuracy. Finally, the mode in the composite




resonator and the radiation field in the wafer are employed in a perturb-
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ation integral4 to calculate the Q. Calculations are performed for the

cases of rectangular electrodes and diaphragms and strip electrodes and

P

diaphragms both when trapping is and is not present. For the case of
strip electrodes and diaphragms the calculated results are shown to be

, . . , 1
in good agreement with the earlier more cumbersome direct calculations

SO Y

As in the earlier workl, all calculations are performed for the particu-
lar case of an aluminum-nitride film on gallium-arsenide. Since the

fundamental essentially thickness-extensional mode will not trap for

aCeatulial aCa

an aluminum-nitride film on a gallium-arsenide diaphragm in the flat
- plate configuration and the second thickness-extensional mode will
trap for a sufficiently thick aluminum-nitride films, the Q is calcu-
lated for the second essentially thickness-extensional mode when
trapping is present and for the fundamental, when trapping is not

present.

2. Perturbation Procedure

Since the coupling is small in the piezoelectric thin film and
the semiconductor is assumed to be nonpiezoelectric, we need consider
only the elastic portion of the equation for the first perturbation of

the eigenfrequency, which may be written in the form4
=H /2 = -
Au u/ 0, wTw, Au’ (2.1)

3 where w, and w are the unperturbed and perturbed eigenfrequencies, )

X respectively, and

- B )
. H, :c]:ni(rijgj u,Ty,) ds, (2.2)
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where n, denotes the outwardly directed unit normal to the surface S
of the resonator. Since, as already noted, any piezoelectric coupling
is ignored, the constitutive equation for the stress tensor Tij is
given by

Tij =i, 4 7 (2.3)

where the cijk denote the elastic constantsanduk is the mechanical

£
displacement vector. Standard Cartesian tensor notation is employed
along with the summation convention for repeated tensor indices and the
comma convention for partial differentiation with respect to a space
coordinate, as in Ref.4. The normalized displacement field g? is
defined by

2
gg*=u;.*/Nu , NI = V[ puJ‘f‘u;*dv, (2.4)

.

in which u? denotes the purely real mechanical displacement field
associated with the mode of interest in the composite resonator and
T?j denotes the associated stress tensor. A cross-section of the
composite resonator attached to the semiconductor wafer is shown in
Figure 1, A schematic plan view of the assumed composite resonator is
shown in Figure 2 along with the assumed approximate edge condition
(u3==0) for the transverely varying thickness-extensional mode  in
accordance with the explanation ir the next section. Thus, for the
problem at hand the surface S in (2.2) denotes the surface along which
the semiconductor portion of the composite resomator abuts the wafer.
The calculated mode in the composite resonator shown in Figure 2
results in tractions Ez and displacements EL that are applied to the

wafer along the surface at which it abuts the resonator as shown in
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Figure 3. These tractions Ez and displacements Ez then cause radiation
fields in the wafer, which are calculated by means of a very accurate
variational approximation procedure in Sec.5. These radiation fields
in the wafer produce a reaction back on the composite resonator along S,
The stresses Tij and displacements uj in (2.2) denote this back reaction
field.

Since the radiating fields in the wafer are chosen to satisfy
the differential equations in and boundary conditions on the major
surfaces of the wafer exactly, in the purely elastic case all that
remains of the-appropriate variational principle in which all conditions
are natural conditions is given by3’

IA(EI,-n'ki‘kz)éﬁzdsi'I nk(ﬁz-ﬁz)é"i‘klds=0, (2.5)

SN e

where SN and S, denote the portions of the surface along the left end

c
of the wafer shown in Figure 3 on which natural- and constraint-

type conditions7, respectively, are prescribed. We note that SN and SC
refer to different portions of the surface for different terms in the
boundary integrals depending on each actual condition at a point, In
(2.5) 0, denotes the outwardly directed unit normal to the wafer and

we note that for surfaces along which the diaphragm abuts the wafer

the nz in (2.2) and (2.5) are equal in magnitude and opposite in signm,

In (2.5) Ez and El are known from the resonant eigensolution Tzk’ uz
and Gz and %kz are found from the expressions for the solution field

radiating into the wafer, which are obtained in Sec.5. At this point

we note that the reaction 4 from the radiating field is complex,
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the real part of which yields a small change in frequency when substi-
tuted in (2,2), which is negligible and not of interest here, and the
imaginary part of which yields the attenuation due to radiation into

the wafer from (2,2) which is sought here. From the well-known rela-

tion w=q - iwu‘/ZQ and (2.1), we obtain

Q =- iw&/Hu. (2.6)

3. Transversely Varying Thickness-Extensional Modes

As noted in Sec.2, a plan view for the determination of the mode
of interest in the composite resonator is shown in Figure 2, in which
the - denotes the electroded region, the S, the side region, the T, the
top (and bottom) region and the C, the corner regions, This notation
is essential for the treatment of the trapped modes, but is not needed
for the untrapped modes because in the untrapped case the edges of the
electrodes are relatively unimportant. It has been shown in Sec,V of
Ref.2 that the homogeneous equation governing the essentially thickness- |

extensional modes may be written in the form

2_n 2.n

o f 3 fN_ f£22 n_  fen_
axl axz [

where n denotes the order of the pure thickness mode in the composite

resonator, both the superscript and subscript f demote the film and

'ﬂfn= nfn in an electroded region while T]fn= T‘fn in an unelectroded :
: region, which are defined in Eqs.(4.48) and (4.46), respectively, of
h
! Ref.2 with the aid of the appropriate root of (3.22) of Ref.2, which
\ 0 . o £ . . )
:': gives T, and with (3.20) Ngns and 33 1s defined in Eq. (3.12) of Ref.2, ]
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The expression for the coefficient Mn’ which is very important because Aﬂ
24
its sign indicates whether trapping is or is not present in the flat
composite plate configuration, is given in Eq.(4.44) along with (&4.41),
(6.42), (4.37), (4.38) and (4.33) of Ref.2 and clearly is much too
cumbersome to present heres. It has also been shown in Sec.V of Ref,?2
that the dominant u3-displacement field accompanying the mode is given
by
fn _ ufnfn( Xa t) sn _ usnfn( £) (3.2) -
Y3 T oty b X Xp, B, Uy = Uy T XX B . o
where the superscripts f and s denote the film and semiconductor i:
RS
"N
diaphragm, respectively, and 0Y3 represents the thickness dependence B4
S
only and is given by :::
*N
fn fin 0 fln 0 £ .
= + <x, < "
oYs A3 cos nfnx3 33 sin nfnx3’ 0 Xs h™ | ﬂ?
sn sln 0 sln (o] s .
= + -
oY3 A3 cos ﬂsnx3 B3 sin T\san, 0>x3> h™, (3.3) :
.
and the amplitudes are given in Eqs.(5.20) of Ref.2, Furthermore, it \
v
has also been shown in Secs.IV and V of Ref.2 that at an interface _
between electroded and unelectroded regions we have the continuity 2
of the two quantities ,ﬁ
o
£, df%dn, (3.4) >
E’
where d/dn denotes the normal derivative (here either d/dx1 or :
b
o
d/dxz), However, the boundary conditions along the edge of the b
assumed resonator shown in Fig,2 that are consistent with the ;
approximation made in obtaining Eq. (3.1) must be explained, ﬂ
It has been shown that to lowest order the pertinent consti-

tutive equations for in-plane tractions take the form2
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T T =0, (3.5)

23 = Sus(U3 2%y 305 Typ = Cee(uy 2%Up )

for both the piezoelectric thin film and the diaphragm essentially

because uy and u, are an order of magnitude smaller than U, for small

wavenumbers along the plate and each differentiation with respect to
X, or x, reduces the order of magnitude by one, On an edge nommal

9
to x, the uniqueness theorem” reveals that we must specify one term

1

of each of the three products

T1%e Tio%2e Tia¥se (.6

However, by virtue of the aforementioned ordering T is two orders

12%2
of magnitude smaller than each of the other two terms and, hence, may

be neglected, as already indicated in (3.5)5. Consequently, on a

free edge normal to x, we should satisfy

1

T, =0, T, =0 (3.7)

and on a fixed edge normal to x, we should satisfy

1
u, = o, uy = 0. (3.8)
Similar considerations for an edge normal to X, reveal that on a free
edge we should satisfy
T,y =0, Tyy =0, 3.9
and on a fixed edge we should satisfy
u, = 0, uy = 0. (3.10)

---------
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Since in the approximation made in obtaining Eq.(3.1) governing
the essentially thickness-extensional modes, we have eliminated all
waves except the important one, we can satisfy only one of the two
conditions in each of (3.7) - (3.10). However, since for small wave-

numbers along the plate u, is large while u, and u, are small, from

3 1 2

this fact and (3.5) it is clear that one of the two conditions in each
of (3.7) - (3.10) is large and the other is small. Consequently, we
take the small equation in each of (3.7) - (3.10) to be satisfied
approximately and require the solution to satisfy the large equation
in each of (3.7) - (3.10) only. Since in each instance the large

term in each of (3.7)- (3.10) is either u, o we have shown that

ru
3 3,3
for either completely free or completely fixed conditions along the

edges of the diaphragm shown in Fig.2, the appropriate condition is

£ =0, (3.11)

on account of (3.2) and (3.3). From Fig.l it is clear that the edge
of the film is free while the edge of the diaphragm is essentially
fixed, and we have shown that in this approximation (3.11) is the
appropriate condition for either case. This means that within this

approximation both uy and either T,, or T,, vanish simultaneously

11 22

along the edge of the resonator,
Since only the semiconductor diaphragm abuts the wafer as shown
in Fig.l only the variables in the semiconductor are relevant here,

However, in order to calculate the tractions t, and displacements u

4

that the mode in the composite resonator exerts on the wafer as showm

£

in Fig.3, we need the associated displacement fields u: and u; in the
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. s
semiconductor diaphragm in addition to u,.

In the untrapped case for the fundamental mode for any n, £
is given by

£ = cos Ekl cos ze eiwt, (3.12)

the substitution of which in (3.1) yields

£f2 _f =2 =2 =2
prw® =TT +M (BT, (3.13)

in which for convenience we have assumed that the upper electrode
covers the entire film since the edges of the electrode are unimportant
because they do not cause exponential decay in the unelectroded region
in the untrapped case, Substituting from (3,12) into the edge condi-

tions (3.11) for the mode of interest, we obtain

T=mn/2d, V=ou/w, (3.14)

with which the unperturbed resonant frequency w may be obtained from

(3.13). It has been shown in Sec.V of Ref.2 that for (3.12), we have

u’ = - Ts(x ) sin Ex cos VX eiwt
1 = 3 1 2 ’
¢
s ..V s = - iwt
u, —é— T (x3) cos §x1 sin sz e , (3.15)

where

1 o s2 . 8.0 sl o
% a Ai sin nsx3'+A1 sin » ﬂsx3-+Bl cos nsx3
82 =2 _ 22 2 (3.16)

+ B} sin kg, €0 0+,
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and »° and the amplitudes are given in (4.30) and (4.26), respectively,
of Ref.2,

In the trapped case we have Eq.(3.1) with 'ﬁfn = ﬁfn in the
electroded region denoted _ and 'ﬁfna ﬁfn in the unelectroded regions
denoted S and T in Fig.2 and as usual ignoring (3.1) in the relatively
unimportant corner regions denoted C. In addition the solution must
satisfy the continuity conditions in (3.4) between the — and S and T
regions and between the S and C and T and C regions and the conditions
(3.11) along the edge of the diaphragm, i.e., at Xy =+d and x2=iw.
Clearly then for the symmetric modes in Xy and X, the expressions for
£% in each of the respective regions shown in Fig.2 are given by

' =Ecos —§-x1 cos wx £° = (E_Se-g(xl-z) +Eieg(x1-z)

2 1
~v(x,=b)
fnT = (E_e 2 + E'E_ev(XZ b)

) cos =,

) cos Exl ,
-€(x,-£)-v(x,-b) -€(x,-£)+v(x.-b)
e _ Eie 1 2 +Ece 1 2
2 »
E(x,=4)=-v(x,-b) E(xy-L)+v(x,-b)
Ce 1 2 +ECe 1 2 , (3.17)

+
Eq 4

the substitution of which in (3.1) yields (3,13) along with

_f a2 2 -2
prw = caaTley - M (8 =V,

2 =2

—f a2
pw = c33ﬂfn - Mn(v -g7) . (3.18)

Substituting from (3.17) into (3.4) at x; = 4 and xz,b and into (3.11)

at x1=d and X,=w, we obtain

e . emn
o




11.
E tan -§£=§ (1 +e'2§(d-l))
- - ’
| -25@-D)
-2v(w-b)
5 Sp=, Llte )
V tan vi=V “Tv(a-b) ’ (3.19)
l-e
where
S = E cos £4 T - E cos vb
= - ’ + - ’
L. F2E@-D) 7 Fx T [ E2v(w-b)
EC - Ecos E&cos vb
- - - - b
R N MCE N
C .. -2v(w-b) C C __ -28(d-4).C
E2 e El’ E3 e El’
EC - e-2§(d-z)-2v(w-b)EC. (3.20)
4 1
Now, as in Ref.2, from (3.13), (3.18) and Egs.(3.21), (3.23),
(3.31) and (3.32) of Ref.2, we obtain
b3 —f
2c 1/2 2c 1/2
- 33 ,,0,2 %n -2] _ [ 33 ,.0,2 »n -2]
s= [ 2T, v [2 ad? - (3.21)
n n
where
:\n - (Pon+R”)/G°n, (3.22)
" on on . .
and R"; G and P are defined in Egs.(3.19), (3.24) and (3.33),

respectively, of Ref,2. Equations (3.19), with (3.21) and (3.22)

constitute two independent transcendental equations for £ and v for

a given £, b, d and w, which may readily be solved for the fundamental

mode of interest. The eigenfrequencies for that mode may then be

determined from (3.13).
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In the trapped case since we have growing and decaying solu-
tions in the S and T regions, from Secs.lII and V of Ref.2 it is

clear that

- - -1) g(x,-4)
sS = s s “5(x s % ] —
= = -
uy s T (x3)[E_e E e cos x, ,
o
-v(x,~b) v(x,.-b)
sT _ £ _s T 2 T 2 ] -
u, Z? T (x3)[E_e -E.e cos §x1, (3.23)
where
S.2 =2 2 T.2 =2 2
(C) =v -8, () =5 =-v , (3.24)

and uis is for the side region and u;T is for the top region. We
further observe that since all wavenumbers along the resonator are
small, u; in the S region and ui in the T region are negligible for
radiation in the X" and xz-directions, respectively, in the wafer,
as discussed more completely in Sec.4. Moreover, it is clear that
for the corner regiomns uic and u;C may be obtained from (3.23) simply
by replacing the respective trigonometric functions in each term by
the exponential function in brackets in the other term and ;C is

given by

(©? =- (2 +vH). (3.25)

4, Variable-Crested Waves in Wafer

In this section we obtain the solution functions for the near
field waves with slowly varying crests and the associated dispersion
relations. The displacement equations of motion and the linear elastic
constitutive equations for the nonpiezoelectric gallium-arsenide

semiconductor wafer with X4 along a cube axis take the form10
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(4.1)
= - ~ ~ - a + -~ + -

1171 et 2 e, 30 T2 o3t 1 To e 2 Tt 3

T33=c1391,1 FC13%2,2 73343, 3

T

PS "

- -~ ~ = ~ +A = A +A
T3 ™% @3 2%y 300 T1p™ () Up 1) T3 =083 170 3y

(4.2)

PSS N N )

A

where the carets are used to denote the wafer as distinct from the
diaphragm.

From either Figs.l or 3 we see that the boundary conditions
on the major surfaces of the semiconducting plate may be written in
the form

~ )

TS = = =2 - s
3 0 at Xq 0 and Xy h” . “.3) {

. o e a e -

N

In considering waves radiating in the xl-direction, we first note

that since V and v are small, from (4.1) and (4.2) it is clear that

As . , A ~
le is an order of magnitude smaller than T°. and u®, and a° is an ’

S
13 1’ 2 s,

R ﬁs QS ~
order of magnitude smaller than u,; and u,. Hence, al

1 3 the x_.-differential

2! 2

. as _ C . , .
equation and T32 are negligible for radiation in the x,-direction.

1

Under these circumstances, from (4.1) we see that the differ- y

ential equations that must be satisfied take the reduced form

3y ¥y ¥ _®

S ~3 s S \AS S As s~s
+ + =
119,11 T C13 T 13 T 040,33 T 2y
§ AS SAs

¢, ,u + ( +c3 Ju

S S
+ =
€13 7%, 13 933,33 T P Yy (4.4)
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and from (4.2) and (4.3) the boundary conditions take the reduced form

S ~s S as ag

cl3u1’1+c33u3,3=0 at x3=0 and X4 =-h" 4.5)
s ,A7s AS s
+ = = B -
| CAA(ul,B u3’1) 0 at Xy 0 and X, h™ . (4.6)

| For waves with slowly varying erests in the xz-direction and

propagating in the -+x1-direction in the near field consider

. o iﬁ > S -iﬁ X i%(x -d) .
u: = cos vxZ(A:e S 3-+B:e s 3), e 1 elwt, a=1,3, (4.7)
which satisfies (4.4) provided
S %S S S= S 28 S “Sa
Tt T o33 =0, Tpahy Yogahs =0, 4.8
S S S &S S S 28
BT - = - =
911P1 7 %1383 70, -opgBy togsBy=0, (4.9)
where
s s a2 s ~2 s 2
S11 TTC1d t o tew
S S
T3 =7 (Cp3te)EN,
s s a2 s 22 s 2
733 T %45 meplg e (4.19)

Each of the two systems of linear homogeneous algebraic equations in
two amplitudes yields nontrivial solutions when the determinant of the

coefficients of the amplitudes vanishes, Both determinants are

-

. . . L 2 a2 2 . -
identical and each is quadratic in £, 7 and w . Thus, for a given 2
s

2 (1) 22
T]S

and w each determinant yields two independent " (ﬂs , ) and each

ﬁ(i) yields amplitude ratios from each system of linear algebraic
s

equations, i.e,, (4.8) and (4.9). Hence, there are four amplitude
ratios, which we denote by

agi siasi asi siasi
AT = w Ay, By vV B, . (4.11)
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As a solution of the boundary conditions (4.5) and (4,6), we

take
z (*sm :m 3+ﬁsm -insmx3) eig(xl-d) eiu)t: A
3—cos vxz 3 , ,
s Asm~sm T]sm 3 mﬁsm -lnszB 1§(x1-d) iwt :
u; =cos vx (. +9 e e e .
m=1 (4.12)

MO I

Substituting from (4.12) into the boundary conditions (4.5) and (4.6)

we obtain

S a ASn, S 2aSn S 2 - R

Z [R5 (ea80%" + e300 #8318 - 530, 0 ] = o, :

Asn 5 “s Aasn, % asn %

+ + = }

z [AB (ﬂ +§) B3 Sl snv §)] °, .

: *sn, s 2*sn, s 2 -insnhs ‘sn s 2 iT]snhs »

+ - = -

Y (A3, v ey e R L L J=o, .

n=1
2 Aasn,a  ASD , A i:ﬁsnﬁs Asn Asn |, A i‘T‘]sn“S
> + - =
> [, A5 + e BT,V + e ]=o. 4.13)
=1

Equations (4.13) constitute a system of four linear homogeneous alge- .

braic equations in A;n and B3 , which yields nontrivial solutions when ™

the determinant of the coefficients vanishes, Calculations are :

v

performed in the usual wayl’2 and yield the ﬂs sn, SS“, Rsn and g°" .

along with the dispersion relation w=<v(§). :

The functions in (4.12) are for either the untrapped case or 3
the electroded region for the trapped case and since for slowly varying _7

crests only the slowly varying terms, i.e., the cos Vx, in (4.12), 3
! which have no influence on the radiating waves or the dispersion 5
' relation, change, it is not purposeful to write the solution for any f
| N

|
|

other regions for the trapped case., From the solution the lowest 17

real dispersion curves for the bulk gallium-arsenide plate have been
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calculated and are shown in dimensionless form in Fig.,4, which is
identical with Fig.6 of Ref.l since for slowly varying crests, the
crests do not influence the dispersion relation uw=w(%). For the
fundamental essentially thickness-extensional resonance of the
composite resonator consisting of a 7 um thick aluminum-nitride film
on a 14 um thick gallium-arsenide diaphragm, which is around 132 MHz,
this number of dispersion curves is for a gallium-arsenide wafer
thickness of about 5 mils. In this work we perform calculations for
wafer thicknesses up to 8 mils for which there are 30 real dispersion
curves for a frequency of 132 MHz, However, we do not bother to show
the figure for more than 17.

Similarly, since statements equivalent to the foregoing hold

for waves with slowly varying crests in the x,-direction and propagating

1

in the xz-direction in the near field, the differential equations and

boundary conditions that must be satisfied may be obtained from

o o e an an anae S ha b can i ash gl Ml int an A A e R e ettt
.

(4.4) - (4,.6) simply by replacing all indices 1 by 2 in (4.4) -~ (4.6).

y
| Under these circumstances the near field radiating solution takes the
]
1 form
s 2 a , a
i X -i X iv(x,~w) .
’ 85 = cos —g-x z (Rsme nsm 3 +gsmy, ﬁsm 3)e w( 2 )elwt
3 1 3 3 ’
m=1
2 LA e L~
in x - -

) 35 = cos E z (~smgsm nsm 3+~sm§sm lnsmx3) l\"(xz W) iwt
' 2 *1 i T vV P3¢ &

m=1

(4.14)
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in place of the form shown in (4.12), From this solution we obtain the

‘ol
»

propagating dispersion curves for near field radiating waves in the

x2-direction. The dispersion curves are identical with those in Fig.,4,

Phal el el el el

-

5. Variational Analysis of Radiation into Wafer

In this section we determine the waves radiating into the semi-

e st eI A B

conductor wafer due to the tractions and displacements resulting from

y the mode in the composite resonator by means of a variational approxi-

b mation procedure, as indicated in Sec.2. Since the near radiation

. fields emanate from the edges of the diaphragm, which are normal to Xy

and Xo) respectively, we may determine the near fields radiating in

the X" and xz-directions separately. Accordingly, we first comsider

PR N R ]

radiation in the xl-direction. From Fig.3 we see that the edge of the

wafer below the diaphragm is traction free, i.e., Tij==0. In Sec.3 we

have shown that for the mode in the resonator T12 vanishes to the

order of approximation throughout and u, and T both vanish

3 11

simultaneously along the edge of the resonatorll, i.e., where the

diaphragm abuts the wafer, while both T13 and uy exist along the same

edge. Furthermore, in Sec.4 it is shown that since the transverse

R Y

mode shape is slowly varying in the wafer, for radiating waves propa-

gating in the xl-direction in the wafer u, is negligiblell. As

2

consequence of the foregoing, for propagation in the +x1-direction

~a

in the untrapped case Eq.(2.5) takes the form

e TN T R e e PR S T L Sk ~ : . TNy
T R T AT A e A N-l‘u’:'f\~'\#\¢"-'\-“\
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~S AS [ R AS AS ~
+ s
f dxz[f (Typfuy +T 0], g dxg + I [T, 8 o
-W Ag 1 _hS "
-h o
[o]
S ~8s AS A ag s Ag
+ (=TS + + - (@S -
(T3 *T13) %300y =g 9y [ -6 - e,
S
-h
AS AS
- u36T13]|x1=d dx3] =0, (.1

where, as already indicated, the forcing terms resulting from the mode

s
13

integral from -w to w is replaced by integrals over the S and C regions,

. . s
in the composite resonator are T., and g.,. In the trapped case, the
1 b

respectively, i,e., from -w to -b and -b to b and b to w, in accordance

with the solution in (3.17) and the expressions for u? and uz given

and discussed at the end of Sec.3, For radiation in the xz-direction

we simply interchange subscripts 1 and 2 and replace w by d in (5.1)
for the untrapped case and w by d and b by £ for the trapped case.
For radiation in the xl-direction we now expand the solution

in the wafer as a sum of waves with slowly varying crests in the

x,~direction, which were discussed in Sec.4 and are given in (4.12),
Thus
~
3 (e)as ()
as s (a)as (o -
&S = z gladgsa) 523, (5.2)
a S a
a=1
» :‘. “ e tatacs :..\v;."-' oA \}__;.,.}_'.(_‘;.,_. TR \}‘\. _\‘;,‘. e ._; .. - .; ) ;\.:\f_‘.-"./\.-_..-_::._.'_..:\.r\.-_.."_‘.: ~ e -\’.’. {\"J'\'..",;#\',- \‘. N
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~s (a) ; . a
where each of the u are of the form given in (4.12) and N denctes
the number of branches of the dispersion curves required for the 1
AS (J

propagating plate waves for a given wafer thickness. Since the 9
are fixed, only the Réa) are varied when (5.2) is substituted into
(5.1). Accordingly, substituting from (5.2) into (5.1), employing

(4.2) and performing the integrations, we obtain an equation cf the

form

1

N N
§ [z K(O‘)A 5 *C ] 6K(a) , (5.3)
B=l =1

Z Z (e, + 10 28s (lore *7sa? A3s

m=1 n=1
Asma sn Asm

- (i #7200 ST+ TEg) Ay

A a a (hSmAsSD Asn Asn ~x A0 AsmAsSn |, ASn., 4Sm
+gmsm ) S(T vS TSa)B3S g(nsm ( 1”'*-G ')A3a

oXe’d 28 Asms sn ~sm sm"svz “sn ~Asm

(-1 +, ) hs(c Mg T, YaS B - g(- ’1 ﬂs ) hs( v 187 ,)B3J

fal0 4
+8('ﬂsm' ‘l ) hs(c va 5 )330' g('n - T]

2B ASmASD | ~sm sy 2B y° ~(¢sm;sn+:sn)ésm—‘
sm 'sn’-h “52773 _! ’
5.4

2
s _ 1 T ..z sl z [ 0
€ N, €4y 810 &d [As - P3g% (”sm’” ) _ps B g - "’s)-hs

m=1

1 a -
S z [A Bg (”] m’n ). +B§2gs (-ﬂssm’n:)-hs]:l

R R R Y I T Y SRR : -
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hY .
N 2
N -
1 £ .. = ) sl ~f8 o s2 Y- 0
2 +E; E sin §d|: zl TS Al gs(nsm’ ns)-hs +A1 gs(nsm“ Kns)-hs
m=
sl B o] s2 a8 .0
+ B1 gc(n:;m’ns)-hS +B1 gc(nsm’ Aﬂs)-hs
2 1 B 2 B
AsSm s a (o] s o o
* zl CTSB [Al gs(-ﬂsm’m)-hS +A1 83("ﬂsm; Kns)-hs
m=
1 o 2 "
* Bi gc(-ngn’ﬂ:)-hs * Bi gc(-nsBm’ Kn:)-hS]] ’ (5.5)

and NLJ- is the normalization factor, which is defined in (2.4) and for

the mode in the composite resonator is given by

2 _ rf f1 _f1 _o.hf sl _sl _o,0
NLL dw LP gsc(A3 :B3 !nf)o + psgsc(A3 ’B3 ’ns)-hs:‘ ’ (5.6)
where h
h 2
2 2
gSC(A,B,'n)h = f (Acos Ix +B sin Tx) dx
1
hl
) l:(Az— B%)sin(2Mx) - 4AB cos(Tlx) +2(A2+BZ)T]xI:=h2 5.7
4n = )
h
In (5.4) and (5.5) we have employed the definitioms
AaSM _ .aSO - A Asm “o
Tla = Y3a(c118ky te13Tm)
ASmMm _ . 4Sm 2 Ay asm
1'Sc:z - 1A3ac44( go:-’-TL.;m“'ar ),
ASm _ ., Asm - L) asm- Ay
9o = B3,(-¢115%% " 137’
Asm _ ,asm _& _ax osm
C’5(:{ - iB3ac44( ga 1]sm\)or ), (5.8)
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h2
h . igh ich
2 _ igx , _ 1 2 M 0
50, - ﬁy M ax= & (e e Ny, g#
1
= - =0 (S.g)
h,-hy , 8
o coh o
i 6% )
gc(e,cp)h=.fel coscpxdx=‘ 2[1 (cosgh - i 7 sin cph):], 8% o
h
i , 2i¢h h _
" D3, 979,
T N4 gh g
i - i . .
8s(e,cp)h = Ielexsinqudx= cpz- 92 [1- e " (cosgh- i 5 sin :ph)J, 8# o
" Lo gy ;B
se ¢ 2

The foregoing is for the untrapped case. For the trapped case Aczﬁ is
unchanged and CZ may be obtained from the expressioms in (5.5) simply
by replacing E sin Ed by § cos EZ/sinh g€(d-4) and E by gs and NU- takes

the form

2 -26(d-1)

w2 = [(z . sin_ZEE\*_z( cos E4 ) [sinh 26(d-4) - 2§(d~z)]]

b 2% 1. o 28(d-4) €
_ -2v(w-b)
sin 2V cos Vb .
x [(b + 5 >+-2(1- e_Zv(w_b)> [sinh 2v(w-b) - 2v(w-b)]]
f £1 1 o hf s1 g

in place of (5.6),
a(a)

the inhomogeneous linear algebraic equations for the Ks

§ (a)
L5

in the form

5= Ch B=1, ... . (5.12)

Since the variations in (5.3) are arbitrary, we obtain

K

”r
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-direction, we obtain

In a similar way for radiation in the X,

N
~(Y) .7
z R{VA 4 ==, 821, ...

y=1

=)

, (5.13)

T
6

in (5.5) for the untrapped case and the revised expression for the

where AYa is given in (5.4) and C| may be obtained from the expression
trapped case simply by replacing E by v, d by w and £ by b,

Equations (5.12) and (5.13) each comnstitute & inhomogeneous linear
algebraic equations for the N unknowns ﬁé&) from (5.12) and the

ﬁ unknowns ﬁéy) from (5.13), respectively., When the iéa) and the ﬁéY)

have been determined, the near field radiating solution is knowm.

6. Quality Factor Resulting from Radiation

In this section we calculate the Q due to radiation into the
semiconductor wafer from the analyses presented in the previous
sections, In accordance with Secs.3~5 it is clear that in the

untrapped case the perturbation integral takes the form

A\ o
_ A5 s AS S AS. s aS s
H, = I dxz[ J [-uyTi 3 + 171800, og * (u3T15- 178D, =-d]dx3]
-t _hS 1 1
d o T
“T.s . aT s AT.s aT s
+ I de[ I ['“3T23+Tzzgz)x2=w+(“3Tz3 § Tzzgz)xzaw]d"a] » (6.1) -
-d - 1
U

while in the trapped case the integral from ~w to w is replaced by
integrals from -w to -b and ~b to b and b to w and the integral from

-d to d is replaced by integrals from -d to -£ and -4 to £ and £ to d, .

in accordance with the solution in (3.17) and the expressions for ui

and u; given and discussed at the end of Sec.3. Substituting the
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imaginary parts of the solutions determined in Secs.3 and 5
into (6.1) for the untrapped case and into the equivalent integral

for the trapped case and performing the integrations, we

obtain
. s N /) (@)
= = | % sin F. sin cvw (o o 2
HIJ- N“_ [§ sin §d(w + S ) z KS (Hl + = \:‘
=1 g
& H(u) -
+9 sin Vw 4+ 8in 28d ng (Q’) 2-)! (6.2)
in the untrapped case and
_1[_Ecos €4 sin Vb , 1 cos Tb
T (sinh E(d-12) [b TS Ot (smh v(w-b))
N H(o:)
x [sinh 2v(w-b) - Zv(w-b)]] z (°’)( 1( @) +_2's_>
s | ¢
—_ - = 2
v _cos Vb sin £¢ , 1 cos €4
* Sinh v(w-b) [z * z T2 (sinh §(d-2)>
N g (@)
x [sinh 2§(d-4) - 28(d- z)]] z ‘(“)( {"“) +—2T—)> (6.3)
g

in the trapped case, where

(o) _ asm® 20" o asm_ . “q .0
Hl [ z|:A3c: c(“a Tl ) A3a gc( T]sm’“s)-‘ns +B3agc( T\sm’ns)-hs
m=1

*

Asm* ~ o sm 2
" B3y 8 (Mo ns)-hs] Z[A (nsm’n ) s - 30’ g - T]:m’ng)-hs

AsSm Al O
M B3ags(-nsm’ns)-h3 - 3cr s( nsm’n ) h :\]
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q
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s2 (o} sm*[", sl _ Za* O s2_ , %o 0
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1 A o s2 flo'as 0 *s:[ sl _he .0
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r

a o sl Ay O s2 o o) }
+Aizgs(-ﬂ:m”‘ns)-hs.blal gc(-T\sm’ﬂs)-hS«FBl gc( T]sm"ms -hs

X
(S
asm*[, sl a0® 0 s2 s .0 sl 2 oy =
) 022 [Ai gs(nsm’ns)-hs-*.Al gs(nsm”‘ns)-hs.’rBl gc(nsm’ns -h® kN
s2 Ao .0 ] 64 o

+8, 8 (T W) S ] . (6.4)

Either Eq.(6.2) or (6. 3) may now be used to calculate the Q from (2.6)
Of course, as in the earlier work1 all radiating plate waves in the
thick region of the gallium-arsenide are included to achieve accuracy,
Since at a given frequency the number of radiating waves in a plate
goes up significantly with thickness, when trapping is not present we
have considered gallium-arsenide wafers no thicker than 8 mils at a
frequency around 132 MHz, for which there are 30 radiating plate
~waves. Results are presented for wafer thicknesses ranging from

4 mils to 8 mils because this is considered to be within the practical

range. For the untrapped case the results presented are for a film
thickness of 7 microns and a diaphragm thickness of 14 microns. Both
strip diaphragms 600 microns wide and square diaphragms with lateral
dimensions of 600 microms X 600 microns were considered. The strips
are treavred for compairison with the earlier workl. The results can

readily be obtained for the strip case from the analysis for the

N
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rectangular case simply by allowing w and b to get very large compared
with £ and d, for which V = 0 and the C and T regions are eliminated
as 1s radiation in the x2-direction. For the trapped case the results
presented are for a film thickness of 12 microns and a diaphragnm
thickness of 14 microns because the trapping is considerably better
for this combination of thicknesses and trapping does not exist for

5 . . .
the other at the second thickness mode~. For this combination of

Bl b loellonlond SR Sl ol X & Bdhil WR A 4R o A af s a R A A s

) thicknesses the second thickness mode is around 250 MHz, In the
trapped case both strip electrodes 500 microns wide and square
electrodes with lateral dimensions of 500 microns X 500 microns were
. considered. The lateral dimensions of both the strip and square
diaphragms was varied and the wafer thickness is 6 mils.

In the absence of trapping for the strip case the values of Q
calculated from Eq.(2,6) of this work are plotted as the solid curve
in Fig.5, in which the dotted curve from Fig.8 of Ref.l is also
plotted for purposes of comparison, It can be seen from the figure
that the agreement is quite good. However, although the highest Q's
calculated in this work are very nearly the same as those obtained
in the earlier more cumbersome direct calculationl, the lowest Q's
calculated by means of the perturbation procedure tend to be nearly
an order of magnitude higher than those calculated by the earlier
direct procedurel. We are not absolutely sure of the reason for this
discrepancy, but there are two possibilities, The perturbation
procedure might be tending to lose its accuracy for low Q because of
the increased radiation or the resonant frequency might not have been
! sufficiently precisely determined by means of the earlier direct

1
procedure for the accurate determination of the lowest Q values,

L)
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However, Fig.5 reveals that the highest Q's calculated by the perturba-
tion procedure are consistently slightly higher than those calculated
using the earlier direct procedure, which tends to support the second
possibility. The figure also shows that the location of the peaks and
valleys of Q with wafer thickness determined by means of the perturba-
tion procedure is in quite good agreement with those obtained from

the earLier direct calculationl. Also,in the absence of trapping

the Q's calculated from Eq.(2.6) for the square diaphragm are plotted
in Fig.6, It can be seen from the figure that the peaks and valleys
are in essentially the same positions as in the strip case, but that

the Q's are considerably lower, roughly between 1/2 to 2/3 of the

values in the strip case, This is as expected because of the radia-
tion in two orthogonal directions for rectangular diaphragms. When
trapping is present the Q's calculated from Eq.(2.6) for both the
strip and square case are plotted in Fig.7 as a function of (d - £),
i.e., the distance from the edge of the electrode to the edge of the
diaphragm. It can be seen from the figure that, as expected, Q
increases very rapidly with (d- £) and for the same value of (d- %)
the Q is about twice as large in the strip case as in the rectangular
case. If a film thickness of, say, 8 microns had been employed, the
required (d - £) for good Q would be much larger because although
trapping is present for that ratio of thicknesses, the dispersion
curve for the trapped mode, i.e., the value of Mo, indicates that the

spatial decay rate at resonance is much slower than for the ratio of

thicknesses considered here.
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FIGURE CAPTIONS

Cross=-Section of a Composite Resonator

Plan View of Model for Analyses of Composite Resonator
Mode Shapes

Cross-Section for Variational Analysis of Radiation
into Wafer

Dispersion Curves for the Gallium-Arsenide Wafer
with (I the Dimensionless Frequency Normalized with
Respect to the First Thickness-Shear Frequency

Quality Factor Versus Wafer Thickness when Trapping
is not Present for the Strip Composite Resonator,
The dotted curves are from Fig,8 of Ref.l.

Quality Factor Versus Wafer Thickness when Trapping
is not Present for the Rectangular Composite Resonator

Quality Factor Versus Distance from Edge of Electrode
to Edge of Diaphragm when Trapping is Present
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